Subset Selection

Nate Wells

Math 243: Stat Learning

October 19th, 2020

Outline

In today's class, we will...

- Discuss data from first midterm
- Investigate algorithms for selecting good subsets of predictors

Section 1

Midterm Data

Overview

• Students fit models of varying complexity based on data on 31 predictors for 200 houses.

Overview

 Students fit models of varying complexity based on data on 31 predictors for 200 houses.

Rows: 200 ## Columns: 31

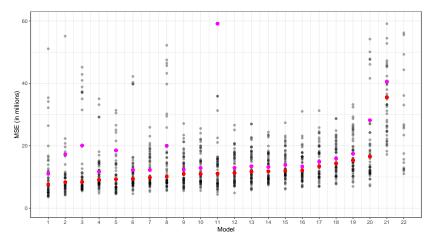
\$ Functional <chr> "Tvp", "Tvp", "Tvp", "Tvp", "Tvp", "Tvp", "Tvp", "Tvp... <chr> "1Fam", "1Fam",""," ## \$ BldgType <chr> "CBlock", "PConc", "CBlock", " ## \$ Foundation ## \$ LotShape <chr> "Reg", "IR1", "IR1", "IR1", "IR1", "Reg", "Reg", "IR1... ## \$ LandSlope <chr> "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl", "Gtl... ## \$ SaleCondition <chr> "Normal", "Normal", "Normal", "Normal", "Normal", "No... <chr> "CompShg", "CompShg", "CompShg", "CompShg", "CompShg"... ## \$ RoofMatl ## \$ ScreenPorch <db1> 20, 60, 60, 20, 20, 20, 20, 85, 60, 20, 60, 30, 20, 9... ## \$ MSSubClass ## \$ GarageCars <dbl> 2, 2, 2, 2, 1, 2, 3, 2, 2, 3, 2, 1, 2, 0, 0, 2, 0, 2,... <dbl> 2, 3, 8, 17, 25, 27, 28, 43, 51, 54, 58, 69, 72, 79, ... ## \$ Id ## \$ BedroomAbvGr <dbl> 3, 3, 3, 2, 3, 3, 3, 2, 3, 0, 3, 2, 2, 4, 3, 2, 3, 2,... ## \$ TotalBsmtSF <dbl> 1262, 920, 1107, 1004, 1060, 900, 1704, 840, 794, 184... ## \$ LotArea <dbl> 9600, 11250, 10382, 11241, 8246, 7200, 11478, 9180, 1... ## \$ OpenPorchSF <dbl> 0, 42, 204, 0, 90, 32, 50, 0, 75, 72, 70, 0, 0, 0, 0, ... ## \$ BsmtFullBath <dbl> 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, ... ## \$ WoodDeckSF <dbl> 298, 0, 235, 0, 406, 222, 0, 240, 0, 857, 0, 0, 0, 0, ... ## \$ OverallCond <dbl> 8, 5, 6, 7, 8, 7, 5, 7, 6, 5, 5, 6, 6, 5, 5, 3, 5, 5, ... ## \$ YrSold <dbl> 2007, 2008, 2009, 2010, 2010, 2010, 2010, 2007, 2007,... ## \$ GrLivArea <dbl> 1262, 1786, 2090, 1004, 1060, 900, 1704, 884, 1470, 1... <dbl> 5, 9, 11, 3, 5, 5, 5, 12, 7, 11, 8, 6, 6, 4, 8, 12, 1... ## \$ MoSold ## \$ TotRmsAbvGrd <dbl> 6, 6, 7, 5, 6, 5, 7, 5, 6, 5, 7, 4, 4, 8, 5, 6, 6, 5,... ## \$ PoolArea ## \$ YearBuilt <dbl> 1976, 2001, 1973, 1970, 1968, 1951, 2007, 1983, 1997,... ## \$ GarageArea <dbl> 460, 608, 484, 480, 270, 576, 772, 504, 388, 894, 565... ## \$ OverallQual <dbl> 6, 7, 7, 6, 5, 5, 8, 5, 6, 9, 7, 4, 4, 4, 4, 5, 4, 5, ... <dbl> 1, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ## \$ Fireplaces ## \$ SalePrice <db1> 181500, 223500, 200000, 149000, 154000, 134800, 30600...

Test MSE

• Models were assesses by computing MSE on 50 test sets of size 100.

Test MSE

• Models were assesses by computing MSE on 50 test sets of size 100.



Magenta indicates mean MSE and red indicates median MSE.

Trends:

• Models with more predictors tended to do better than models with fewer predictors

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE
- Performing log or root transformation on response greatly reduced test MSE (after predictions returned to original scale), at the cost of stability

Trends:

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE
- Performing log or root transformation on response greatly reduced test MSE (after predictions returned to original scale), at the cost of stability
- By coincidence, the full model was in the middle of the pack.

Suggestions:

Trends:

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE
- Performing log or root transformation on response greatly reduced test MSE (after predictions returned to original scale), at the cost of stability
- By coincidence, the full model was in the middle of the pack.

Suggestions:

• Perform more data exploration

Trends:

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE
- Performing log or root transformation on response greatly reduced test MSE (after predictions returned to original scale), at the cost of stability
- By coincidence, the full model was in the middle of the pack.

Suggestions:

- Perform more data exploration
- When implementing complexity increasing methods (non-linear terms and transformations), assess whether data supports inclusion

Trends:

- Models with more predictors tended to do better than models with fewer predictors
- Models with 0 or 1 interaction terms tended to do better than those with more interactions
- Transforming some predictor variables were helpful in stabilizing test MSE
- Performing log or root transformation on response greatly reduced test MSE (after predictions returned to original scale), at the cost of stability
- By coincidence, the full model was in the middle of the pack.

Suggestions:

- Perform more data exploration
- When implementing complexity increasing methods (non-linear terms and transformations), assess whether data supports inclusion
- Generally, adding predictors increases complexity by less than adding interaction terms or transformations

Section 2

Subset Selection

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

• Cross-validation: Computationally expensive

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

• Cross-validation: Computationally expensive

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

- Cross-validation: Computationally expensive
- Adjusted R^2 : Penalizes non-helpful predictors, but may overestimate test error rate.

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

- Cross-validation: Computationally expensive
- Adjusted R^2 : Penalizes non-helpful predictors, but may overestimate test error rate.
- C_p : penalizes training RSS by typical discrepancy between test and training.

$$C_p = \frac{1}{n} (\mathrm{RSS} + 2d\hat{\sigma}^2)$$

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

- Cross-validation: Computationally expensive
- Adjusted R^2 : Penalizes non-helpful predictors, but may overestimate test error rate.
- C_p : penalizes training RSS by typical discrepancy between test and training.

$$C_p = rac{1}{n}(\mathrm{RSS} + 2d\hat{\sigma}^2)$$

 Akaike information criterion (AIC): uses method of maximum likelihood, assuming Normal errors

$$AIC = \frac{1}{n\hat{\sigma}^2} (RSS + 2d\hat{\sigma}^2)$$

Suppose we wish to find a linear model for Y with p predictors X_1, \ldots, X_p .

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.

- Cross-validation: Computationally expensive
- Adjusted R^2 : Penalizes non-helpful predictors, but may overestimate test error rate.
- C_p : penalizes training RSS by typical discrepancy between test and training.

$$C_p = rac{1}{n}(\mathrm{RSS} + 2d\hat{\sigma}^2)$$

• Akaike information criterion (AIC): uses method of maximum likelihood, assuming Normal errors

$$AIC = \frac{1}{n\hat{\sigma}^2} (RSS + 2d\hat{\sigma}^2)$$

 Bayesian information criterion (BIC): uses method of maximum likelihood and Bayes' Rule

$$BIC = \frac{1}{n\hat{\sigma}^2} (RSS + \ln nd\hat{\sigma}^2)$$

With p predictors, there are a total of 2^p possible MLR models.

• There are $\binom{p}{k}$ models using exactly k of p predictors

With p predictors, there are a total of 2^p possible MLR models.

• There are $\binom{p}{k}$ models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the best via appropriate selection criteria (C_p , AIC, BIC, R^2 , CV)

With p predictors, there are a total of 2^p possible MLR models.

• There are $\binom{p}{k}$ models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the best via appropriate selection criteria (C_p , AIC, BIC, R^2 , CV)

Downsides?

With p predictors, there are a total of 2^p possible MLR models.

• There are $\binom{p}{k}$ models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the best via appropriate selection criteria (C_p , AIC, BIC, R^2 , CV)

Downsides?

• Computation time and storage grows exponentially in p

With p predictors, there are a total of 2^p possible MLR models.

• There are $\binom{p}{k}$ models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the best via appropriate selection criteria (C_{ρ} , AIC, BIC, R^2 , CV)

Downsides?

- Computation time and storage grows exponentially in p
- May have low marginal improvement despite number of models fitted

We use the regsubsets function in the leaps library.

• regsubsets uses the same syntax as 1m. The summary function outputs the best set of variables for the given number of predictors

- regsubsets uses the same syntax as 1m. The summary function outputs the best set of variables for the given number of predictors
- Be default, regsubsets only returns up to the best eight models. But nvmax can be used to return as many variables as desired

- regsubsets uses the same syntax as 1m. The summary function outputs the best set of variables for the given number of predictors
- Be default, regsubsets only returns up to the best eight models. But nvmax can be used to return as many variables as desired
- Best is determined by *RSS*.

- regsubsets uses the same syntax as 1m. The summary function outputs the best set of variables for the given number of predictors
- Be default, regsubsets only returns up to the best eight models. But nvmax can be used to return as many variables as desired
- Best is determined by RSS.

```
library(palmerpenguins)
library(leaps)
penguins<-penguins %>% drop_na()
```

```
best_subset<-regsubsets(body_mass_g ~. , data = penguins, nvmax = 8)</pre>
```

Summary of regsubsets

• Stars indicate variable is included in model

##	Subset selection ob	ject					
##	Call: regsubsets.fc	rmula(body_m	ass_g ~ ., data	= penguins, nvmax = 8)			
##	9 Variables (and intercept)						
##	F	orced in For	ced out				
##	speciesChinstrap	FALSE	FALSE				
##	speciesGentoo	FALSE	FALSE				
##	islandDream	FALSE	FALSE				
##	islandTorgersen	FALSE	FALSE				
##	bill_length_mm	FALSE	FALSE				
##	bill_depth_mm	FALSE	FALSE				
##	flipper_length_mm	FALSE	FALSE				
##	sexmale	FALSE	FALSE				
##	year	FALSE	FALSE				
##	1 subsets of each s	ize up to 8					
##	Selection Algorithm	: exhaustive					
##	speciesChi	nstrap speci	esGentoo islandD	ream islandTorgersen			
##	1 (1)""						
##	2 (1)""	"*"					
##	3 (1) " "	"*"					
##	4 (1)""	"*"					
##	5 (1)"*"	"*"					
##	6 (1)"*"	"*"					
##	7 (1)"*"	"*"					
##	8 (1)"*"	"*"		"*"			
##			pth_mm flipper_l	ength_mm sexmale year			
##	/		"*"				
##	2 (1)""			"*" " "			
##	3 (1)""		"*"	"*" " "			
##	4 (1)""	"*"	"*"	"*" " "			
##	5 (1)""	"*"	"*"	"*" " "			
##	/	"*"	"*"	"*" " "			
	7 (1)"*"	"*"	"*"	"*" "*"			
##		"*"	"*"	"*" "*"			
	Nate Wells (Math 243	Stat Learnin	g)	Subset Selection			

Other Selection Metrics

```
The summary function can return selection metrics for each model.
```

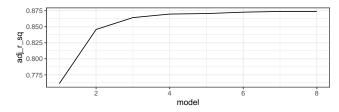
```
adj_r_sq<-summary(best_subset)$adjr2
rss<-summary(best_subset)$rss
cp<-summary(best_subset)$cp</pre>
```

```
d<-data.frame(model = 1:8, adj_r_sq, rss, cp )
d</pre>
```

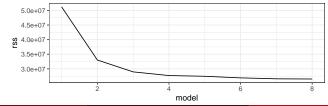
##		model	adj_r_sq	rss	cp
##	1	1	0.7613734	51211963	294.805584
##	2	2	0.8457078	33012815	75.124367
##	3	3	0.8642104	28965893	27.829395
##	4	4	0.8697020	27709979	14.531285
##	5	5	0.8704945	27457472	13.455534
##	6	6	0.8726606	26915647	8.855638
##	7	7	0.8737834	26596486	6.967990
##	8	8	0.8737208	26527820	8.131576

Plotting

We can use ggplot2 to visualize selection metric as a function of variable number ggplot(d, aes(x = model, y = adj_r_sq))+geom_line()+theme_bw()



ggplot(d, aes(x = model, y = rss))+geom_line()+theme_bw()



Nate Wells (Math 243: Stat Learning)

Forward selection is a *computationally efficient* alternative to best subset

 To perform forward selection, create the best 1 variable model. Then create p - 1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.

- To perform forward selection, create the best 1 variable model. Then create p-1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in *p*: Num. Models = $1 + \frac{p(p+1)}{2}$

- To perform forward selection, create the best 1 variable model. Then create p-1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in p: Num. Models = $1 + \frac{p(p+1)}{2}$
- Forward selection tends to favor parsimonous models

- To perform forward selection, create the best 1 variable model. Then create p-1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in p: Num. Models = $1 + \frac{p(p+1)}{2}$
- Forward selection tends to favor parsimonous models
- Downsides?

- To perform forward selection, create the best 1 variable model. Then create p 1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in *p*: Num. Models = $1 + \frac{p(p+1)}{2}$
- Forward selection tends to favor parsimonous models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)

- To perform forward selection, create the best 1 variable model. Then create p 1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in *p*: Num. Models = $1 + \frac{p(p+1)}{2}$
- Forward selection tends to favor parsimonous models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)
 - Early predictors may become redundant

- To perform forward selection, create the best 1 variable model. Then create p 1 new 2 variable models by adding each other predictor one-at-a-time to the existing 1-variable model. Repeat for 3 variables and so on.
- Compared to Best Subset, forward selection computation time grows polynomially in *p*: Num. Models = $1 + \frac{p(p+1)}{2}$
- Forward selection tends to favor parsimonous models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)
 - Early predictors may become redundant
 - Can be unstable

Backward Elimination is another computationally efficient alternative to best subset

• To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models
- Downsides?

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)
 - Requires fewer predictors than observations

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)
 - Requires fewer predictors than observations
 - Susceptible to multicollinearity

- To perform backward selection, begin with full model. Then create p-1 new p-1 variable models by removing one-at-a-time each other predictor from the existing *p*-variable model. Repeat for p-2 variables and so on.
- Compared to Best Subset, backward elimination computation time grows polynomially in p: Num. Models = 1 + \frac{\rho(p+1)}{2}
- Backward elimination tends to favor in-depth models
- Downsides?
 - Not guaranteed to find the best model (or even something close to the best model)
 - Requires fewer predictors than observations
 - Susceptible to multicollinearity
 - Can be unstable

Forward/Backward Selection in R

Summary of Forward Selection

summary(forward_select)

##	Subset selection object					
##	Call: regsubsets.formula(body_mass_g ~ ., data = penguins, nvmax = 8,					
##	method = "forward")					
##	9 Variables (and intercept)					
##	For	ced in Forc	ed out			
##	speciesChinstrap	FALSE	FALSE			
##	speciesGentoo	FALSE	FALSE			
##	islandDream	FALSE	FALSE			
##	islandTorgersen	FALSE	FALSE			
##	bill_length_mm	FALSE	FALSE			
##	bill_depth_mm	FALSE	FALSE			
##	flipper_length_mm	FALSE	FALSE			
	sexmale	FALSE	FALSE			
	year	FALSE	FALSE			
	1 subsets of each size					
##	Selection Algorithm: :					
##				ream islandTorgersen		
##	,					
##	- (-)					
##	,	"*"				
##	,	"*"				
##	/	"*"				
##	/	"*"				
##		"*"				
##	/	"*"		"*"		
##				ength_mm sexmale year		
##	,		"*"			
##	- (-)		"*"	******		
##	,		"*"	******		
##	/	"*"	"*"	*******		
##	/	"*"	"*"			
##	/	"*"	"*"	*		
##		"*"	"*"	"*" "*"		
##	/	"*"	"*"	"*" "*" Subset Selection		
	Nate Wells (Math 243: 5	otat Learning)	Subset Selection		

Summary of Backward Elimination

summary(backward elim)

Subset selection object ## Call: regsubsets.formula(body_mass_g ~ ., data = penguins, nvmax = 8, ## method = "backward") ## 9 Variables (and intercept) Forced in Forced out ## ## speciesChinstrap FALSE FALSE ## speciesGentoo FALSE FALSE FALSE FALSE ## islandDream ## islandTorgersen FALSE FALSE ## bill_length_mm FALSE FALSE ## bill_depth_mm FALSE FALSE FALSE FALSE ## flipper_length_mm ## sexmale FALSE FALSE ## vear FALSE FALSE ## 1 subsets of each size up to 8 ## Selection Algorithm: backward ## speciesChinstrap speciesGentoo islandDream islandTorgersen "*" ## 1 (1) " " ## 2 (1) . . ال ب ال ## 3 (1) . . "*" (1) . . "*" . . ## 4 ## 5 (1) "*" ال ب ال ## 6 (1) "*" "*" . . (1) "*" ## 7 11 - 11 ## 8 (1) "*" "*" "*" ## bill length mm bill depth mm flipper length mm sexmale vear . . ## 1 (1) " " ## 2 (1) "*" ## 3 (1) " " "*" 11 - 11 . . ## 4 (1) . . "*" "*" "*" ## 5 (1)"" 11 **a** 11 11 **a** 11 "*" . . 11 **a** 11 11 **a** 11 11 **a** 11 . . ## 6 (1) "*" ## 7 (1) "*" 11 **a** 11 11 **a** 11 11 **a** 11 11 <u>a</u> 11 ## 8 (1) "*" 11 **a** 11 11 **a** 11 11 **a** 11 11 <u>a</u> 11