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Subset Selection Penalized Regression

Outline

In today’s class, we will. . .
• Investigate algorithms for selecting good subsets of predictors
• Discuss penalized regression as an alternate method of model selection
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Subset Selection Penalized Regression

Section 1

Subset Selection
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Subset Selection Penalized Regression

Methodology

Suppose we wish to find a linear model for Y with p predictors X1, . . . ,Xp.

How do we determine the optimal collection of predictors?

Determine an appropriate selection criteria.
• Cross-validation: Computationally expensive
• Adjusted R2: Penalizes non-helpful predictors, but may overestimate test error rate.
• Cp: penalizes training RSS by typical discrepancy between test and training.

Cp = 1
n (RSS + 2d σ̂2)

• Akaike information criterion (AIC): uses method of maximum likelihood, assuming
Normal errors

AIC = 1
nσ̂2 (RSS + 2d σ̂2)

• Bayesian information criterion (BIC): uses method of maximum likelihood and Bayes’
Rule

BIC = 1
nσ̂2 (RSS + ln nd σ̂2)
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Subset Selection Penalized Regression

Best Subset

With p predictors, there are a total of 2p possible MLR models.
• There are

(p
k

)
models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the
best via appropriate selection criteria (Cp, AIC, BIC, R2, CV )

Downsides?
• Computation time and storage grows exponentially in p
• May have low marginal improvement despite number of models fitted
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Subset Selection Penalized Regression

Best Subset in R

We use the regsubsets function in the leaps library.

• regsubsets uses the same syntax as lm. The summary function outputs the best set
of variables for the given number of predictors
• Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired
• Best is determined by RSS.

library(palmerpenguins)
library(leaps)
penguins<-penguins %>% drop_na()

best_subset<-regsubsets(body_mass_g ~. , data = penguins, nvmax = 8)
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Subset Selection Penalized Regression

Summary of regsubsets

• Stars indicate variable is included in model
## Subset selection object
## Call: regsubsets.formula(body_mass_g ~ ., data = penguins, nvmax = 8)
## 9 Variables (and intercept)
## Forced in Forced out
## speciesChinstrap FALSE FALSE
## speciesGentoo FALSE FALSE
## islandDream FALSE FALSE
## islandTorgersen FALSE FALSE
## bill_length_mm FALSE FALSE
## bill_depth_mm FALSE FALSE
## flipper_length_mm FALSE FALSE
## sexmale FALSE FALSE
## year FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
## speciesChinstrap speciesGentoo islandDream islandTorgersen
## 1 ( 1 ) " " " " " " " "
## 2 ( 1 ) " " "*" " " " "
## 3 ( 1 ) " " "*" " " " "
## 4 ( 1 ) " " "*" " " " "
## 5 ( 1 ) "*" "*" " " " "
## 6 ( 1 ) "*" "*" " " " "
## 7 ( 1 ) "*" "*" " " " "
## 8 ( 1 ) "*" "*" " " "*"
## bill_length_mm bill_depth_mm flipper_length_mm sexmale year
## 1 ( 1 ) " " " " "*" " " " "
## 2 ( 1 ) " " " " " " "*" " "
## 3 ( 1 ) " " " " "*" "*" " "
## 4 ( 1 ) " " "*" "*" "*" " "
## 5 ( 1 ) " " "*" "*" "*" " "
## 6 ( 1 ) "*" "*" "*" "*" " "
## 7 ( 1 ) "*" "*" "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*" "*"
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Subset Selection Penalized Regression

Other Selection Metrics

The summary function can return selection metrics for each model.
adj_r_sq<-summary(best_subset)$adjr2
rss<-summary(best_subset)$rss
cp<-summary(best_subset)$cp

d<-data.frame(model = 1:8, adj_r_sq, rss, cp )
d

## model adj_r_sq rss cp
## 1 1 0.7613734 51211963 294.805584
## 2 2 0.8457078 33012815 75.124367
## 3 3 0.8642104 28965893 27.829395
## 4 4 0.8697020 27709979 14.531285
## 5 5 0.8704945 27457472 13.455534
## 6 6 0.8726606 26915647 8.855638
## 7 7 0.8737834 26596486 6.967990
## 8 8 0.8737208 26527820 8.131576
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Subset Selection Penalized Regression

Plotting

We can use ggplot2 to visualize selection metric as a function of variable number
ggplot(d, aes(x = model, y = adj_r_sq))+geom_line()+theme_bw()
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Subset Selection Penalized Regression

Forward Selection

Forward selection is a computationally efficient alternative to best subset

• To perform forward selection, create the best 1 variable model. Then create p − 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.
• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable
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Subset Selection Penalized Regression

Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

• To perform backward selection, begin with full model. Then create p − 1 new p − 1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p − 2 variables and so on.
• Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models = 1 + p(p+1)

2

• Backward elimination tends to favor in-depth models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Requires fewer predictors than observations
• Susceptible to multicollinearity
• Can be unstable
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Subset Selection Penalized Regression

Forward/Backward Selection in R

We again use the regsubsets function in the leaps library.
forward_select<-regsubsets(body_mass_g ~. , data = penguins, nvmax = 8,

method = "forward")

backward_elim<-regsubsets(body_mass_g ~. , data = penguins, nvmax = 8,
method = "backward")
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Subset Selection Penalized Regression

Summary of Forward Selection
summary(forward_select)

## Subset selection object
## Call: regsubsets.formula(body_mass_g ~ ., data = penguins, nvmax = 8,
## method = "forward")
## 9 Variables (and intercept)
## Forced in Forced out
## speciesChinstrap FALSE FALSE
## speciesGentoo FALSE FALSE
## islandDream FALSE FALSE
## islandTorgersen FALSE FALSE
## bill_length_mm FALSE FALSE
## bill_depth_mm FALSE FALSE
## flipper_length_mm FALSE FALSE
## sexmale FALSE FALSE
## year FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: forward
## speciesChinstrap speciesGentoo islandDream islandTorgersen
## 1 ( 1 ) " " " " " " " "
## 2 ( 1 ) " " " " " " " "
## 3 ( 1 ) " " "*" " " " "
## 4 ( 1 ) " " "*" " " " "
## 5 ( 1 ) "*" "*" " " " "
## 6 ( 1 ) "*" "*" " " " "
## 7 ( 1 ) "*" "*" " " " "
## 8 ( 1 ) "*" "*" " " "*"
## bill_length_mm bill_depth_mm flipper_length_mm sexmale year
## 1 ( 1 ) " " " " "*" " " " "
## 2 ( 1 ) " " " " "*" "*" " "
## 3 ( 1 ) " " " " "*" "*" " "
## 4 ( 1 ) " " "*" "*" "*" " "
## 5 ( 1 ) " " "*" "*" "*" " "
## 6 ( 1 ) "*" "*" "*" "*" " "
## 7 ( 1 ) "*" "*" "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*" "*"
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Subset Selection Penalized Regression

Summary of Backward Elimination
summary(backward_elim)

## Subset selection object
## Call: regsubsets.formula(body_mass_g ~ ., data = penguins, nvmax = 8,
## method = "backward")
## 9 Variables (and intercept)
## Forced in Forced out
## speciesChinstrap FALSE FALSE
## speciesGentoo FALSE FALSE
## islandDream FALSE FALSE
## islandTorgersen FALSE FALSE
## bill_length_mm FALSE FALSE
## bill_depth_mm FALSE FALSE
## flipper_length_mm FALSE FALSE
## sexmale FALSE FALSE
## year FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: backward
## speciesChinstrap speciesGentoo islandDream islandTorgersen
## 1 ( 1 ) " " "*" " " " "
## 2 ( 1 ) " " "*" " " " "
## 3 ( 1 ) " " "*" " " " "
## 4 ( 1 ) " " "*" " " " "
## 5 ( 1 ) "*" "*" " " " "
## 6 ( 1 ) "*" "*" " " " "
## 7 ( 1 ) "*" "*" " " " "
## 8 ( 1 ) "*" "*" " " "*"
## bill_length_mm bill_depth_mm flipper_length_mm sexmale year
## 1 ( 1 ) " " " " " " " " " "
## 2 ( 1 ) " " " " " " "*" " "
## 3 ( 1 ) " " " " "*" "*" " "
## 4 ( 1 ) " " "*" "*" "*" " "
## 5 ( 1 ) " " "*" "*" "*" " "
## 6 ( 1 ) "*" "*" "*" "*" " "
## 7 ( 1 ) "*" "*" "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*" "*"
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Subset Selection Penalized Regression

Section 2

Penalized Regression
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Subset Selection Penalized Regression

Motivation 1

Suppose we wish to build a linear model for Y using predictors X1, . . . ,Xp using n
observations.

Generally, under what circumstances will the full model perform well, compared to other
subset models? (Think about the Bias-Variance Tradeoff)
• If irreducible error is small (ε ∼ N(0, σ2) with σ ≈ 0 )
• If model variance is high and model bias is low.

Suppose ŷ = 10 + 0.01x2 + 1000x2 is the best fitting linear model using X1 and X2.

How might the bias and variance of the following model compare?

ŷ = 10 + 0.01x2 + 500x2

When might this new model have lower MSE than the original model?
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ŷ = 10 + 0.01x2 + 500x2

When might this new model have lower MSE than the original model?

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 16 / 20



Subset Selection Penalized Regression

Motivation 1

Suppose we wish to build a linear model for Y using predictors X1, . . . ,Xp using n
observations.

Generally, under what circumstances will the full model perform well, compared to other
subset models? (Think about the Bias-Variance Tradeoff)
• If irreducible error is small (ε ∼ N(0, σ2) with σ ≈ 0 )
• If model variance is high and model bias is low.
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Subset Selection Penalized Regression

Motivation 2

Suppose ŷ = 10 + 0.01x1 + 1000x2 is again the best fitting linear model using X1 and X2.

• Are we justified in saying that X2 is a more important predictor than X1?

Suppose we first standardize X1 and X2 by subtacting off their means and dividing by their
standard deviations:

Z1 = X1 − µ1

σ1
Z2 = X2 − µ2

σ2

• If we build a model and find ŷ = 10 + 0.01z1 + 1000z2, where Z1 and Z2 are
standardized, are we now justified in saying that Z2 is more important than Z1?

• How might the variance and bias of the following model compare to the standarized
model?

ŷ = 10 + 0.02z2 + 500z1
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ŷ = 10 + 0.02z2 + 500z1

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 17 / 20



Subset Selection Penalized Regression

Motivation 2
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Subset Selection Penalized Regression

Ridge Regression

Recall that least squares regression estimates β̂0, β̂1, . . . , β̂p for

ŷ = β0 + β1X1 + · · ·+ βpXp + ε
are obtained by finding the values of β that minimize

RSS =
n∑

i=1

(yi − ŷi )2 =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

To perform Ridge Regression, we instead find coefficients β that minimize

RSS + λ

p∑
i=1

β2
i where λ ≥ 0 is tuning parameter

Why?
• The term λ

∑p
i=1 β

2
i is the shrinkage penalty, and is small when the β are small.

• With a shrinkage penalty, the algorithm prefers models with lower coefficients.
• This tends to reduce variance, at the cost of increased bias.
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ŷ = β0 + β1X1 + · · ·+ βpXp + ε
are obtained by finding the values of β that minimize

RSS =
n∑

i=1

(yi − ŷi )2 =
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Subset Selection Penalized Regression

Effects of the Tuning Parameter

Goal: Find β which minimize RSS + λ
∑p

i=1 β
2
p

What will happen to β0 as λ→∞? As λ→ 0?

What happens to MSE as λ→ 0 or λ→ 1?

Bias

MSE

Variance

Irred.

0.0

0.5

1.0

1.5

2.0

10^0 10^2.5 10^5 10^7.5 10^10
Lambda

E
rr

or

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 19 / 20



Subset Selection Penalized Regression

Effects of the Tuning Parameter

Goal: Find β which minimize RSS + λ
∑p

i=1 β
2
p

What will happen to β0 as λ→∞? As λ→ 0?

What happens to MSE as λ→ 0 or λ→ 1?

Bias

MSE

Variance

Irred.

0.0

0.5

1.0

1.5

2.0

10^0 10^2.5 10^5 10^7.5 10^10
Lambda

E
rr

or

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 19 / 20



Subset Selection Penalized Regression

Effects of the Tuning Parameter

Goal: Find β which minimize RSS + λ
∑p

i=1 β
2
p

What will happen to β0 as λ→∞? As λ→ 0?

What happens to MSE as λ→ 0 or λ→ 1?

Bias

MSE

Variance

Irred.

0.0

0.5

1.0

1.5

2.0

10^0 10^2.5 10^5 10^7.5 10^10
Lambda

E
rr

or

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 19 / 20



Subset Selection Penalized Regression

Effects of the Tuning Parameter

Goal: Find β which minimize RSS + λ
∑p

i=1 β
2
p

What will happen to β0 as λ→∞? As λ→ 0?

What happens to MSE as λ→ 0 or λ→ 1?

Bias

MSE

Variance

Irred.

0.0

0.5

1.0

1.5

2.0

10^0 10^2.5 10^5 10^7.5 10^10
Lambda

E
rr

or

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 19 / 20



Subset Selection Penalized Regression

Standardization

Suppose X1 and X2 are non-standardized predictors and the best fitting linear model is

ŷ = 10 + 0.01x1 + 1000x2

What type of models will ridge regression prefer (in terms of β1 and β2)?

• Recall the shrinkage penalty is λ
∑2

i=1 β
2
i = λ(10002 + 0.012)

• Since β2 = 1000 is much larger than β1 = 0.01, ridge regression will prioritize
reducing β2 over β1.
• Will this actually produce good MSE for a fixed λ?

• Only if standard deviation of x2 is much, much larger than that of x1

Ridge regression is most efficient if predictors are standardarized first.

zij = xij − x̄j

σ̂j

Where xij is the ith observation of the jth predictor, x̄j is the sample mean of the jth
predictor, and σ̂j is the sample st. dev. of the jth predictor.
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ŷ = 10 + 0.01x1 + 1000x2
What type of models will ridge regression prefer (in terms of β1 and β2)?

• Recall the shrinkage penalty is λ
∑2

i=1 β
2
i = λ(10002 + 0.012)

• Since β2 = 1000 is much larger than β1 = 0.01, ridge regression will prioritize
reducing β2 over β1.
• Will this actually produce good MSE for a fixed λ?

• Only if standard deviation of x2 is much, much larger than that of x1

Ridge regression is most efficient if predictors are standardarized first.

zij = xij − x̄j

σ̂j

Where xij is the ith observation of the jth predictor, x̄j is the sample mean of the jth
predictor, and σ̂j is the sample st. dev. of the jth predictor.

Nate Wells (Math 243: Stat Learning) Subset Selection October 21st, 2020 20 / 20


	Subset Selection
	Penalized Regression

