Nate Wells

Math 243: Stat Learning

October 28tht, 2020

Outline

In today's class, we will...

- Discuss Ridge Regression as an alternate method of model selection
- Implement Ridge Regression using the glmnet package

Section 1

Penalized Regression

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)

- Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.
- Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)
 - If irreducible error is small ($\epsilon \sim N(0, \sigma^2)$ with $\sigma \approx 0$)

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)

- If irreducible error is small ($\epsilon \sim N(0, \sigma^2)$ with $\sigma \approx 0$)
- If model variance is low and model bias is high.

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)

- If irreducible error is small ($\epsilon \sim N(0,\sigma^2)$ with $\sigma pprox 0$)
- If model variance is low and model bias is high.

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is the best fitting linear model using X_1 and X_2 .

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)

- If irreducible error is small ($\epsilon \sim N(0,\sigma^2)$ with $\sigma pprox 0$)
- If model variance is low and model bias is high.

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is the best fitting linear model using X_1 and X_2 . How might the bias and variance of the following model compare?

 $\hat{y} = 10 + 0.01x_1 + 500x_2$

Suppose we wish to build a linear model for Y using predictors X_1, \ldots, X_p using n observations.

Generally, under what circumstances will the **full model** perform well, compared to other subset models? (*Think about the Bias-Variance Tradeoff*)

- If irreducible error is small ($\epsilon \sim N(0,\sigma^2)$ with $\sigma pprox 0$)
- If model variance is low and model bias is high.

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is the best fitting linear model using X_1 and X_2 . How might the bias and variance of the following model compare?

 $\hat{y} = 10 + 0.01x_1 + 500x_2$

When might this new model have lower MSE than the original model?

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is again the best fitting linear model using X_1 and X_2 .

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is again the best fitting linear model using X_1 and X_2 .

• Are we justified in saying that X_2 is a more important predictor than X_1 ?

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is again the best fitting linear model using X_1 and X_2 .

• Are we justified in saying that X_2 is a more important predictor than X_1 ?

Suppose we first standardize X_1 and X_2 by subtacting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is again the best fitting linear model using X_1 and X_2 .

• Are we justified in saying that X_2 is a more important predictor than X_1 ?

Suppose we first standardize X_1 and X_2 by subtacting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

• If we build a model and find $\hat{y} = 10 + 0.01z_1 + 1000z_2$, where Z_1 and Z_2 are standardized, are we now justified in saying that Z_2 is more important than Z_1 ?

Suppose $\hat{y} = 10 + 0.01x_1 + 1000x_2$ is again the best fitting linear model using X_1 and X_2 .

• Are we justified in saying that X_2 is a more important predictor than X_1 ?

Suppose we first standardize X_1 and X_2 by subtacting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

- If we build a model and find $\hat{y} = 10 + 0.01z_1 + 1000z_2$, where Z_1 and Z_2 are standardized, are we now justified in saying that Z_2 is more important than Z_1 ?
 - How might the variance and bias of the following model compare to the standarized model?

$$\hat{y} = 10 + 0.02z_2 + 500z_1$$

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$\text{RSS} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

To perform Ridge Regression, we instead find coefficients β that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

To perform Ridge Regression, we instead find coefficients β that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

Why?

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

To perform Ridge Regression, we instead find coefficients β that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

Why?

• The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{\it P}$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

To perform Ridge Regression, we instead find coefficients β that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

Why?

- The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.
- With a shrinkage penalty, the algorithm prefers models with lower coefficients.

Recall that least squares regression estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{\it P}$ for

$$\hat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

are obtained by finding the values of β that minimize

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

To perform Ridge Regression, we instead find coefficients β that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

Why?

- The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.
- With a shrinkage penalty, the algorithm prefers models with lower coefficients.
- This tends to reduce variance, at the cost of increased bias.

Goal: Find β which minimize RSS + $\lambda \sum_{i=1}^{p} \beta_{p}^{2}$

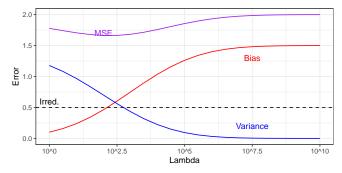
Goal: Find β which minimize $\text{RSS} + \lambda \sum_{i=1}^{p} \beta_p^2$

What will happen to β_0 as $\lambda \to \infty$? As $\lambda \to 0$?

- Goal: Find β which minimize RSS + $\lambda \sum_{i=1}^{p} \beta_{p}^{2}$
- What will happen to β_0 as $\lambda \to \infty$? As $\lambda \to 0$?
- What happens to MSE as $\lambda \rightarrow 0$ or $\lambda \rightarrow 1$?

Goal: Find β which minimize $RSS + \lambda \sum_{i=1}^{p} \beta_{p}^{2}$ What will happen to β_{0} as $\lambda \to \infty$? As $\lambda \to 0$?

What happens to MSE as $\lambda \rightarrow 0$ or $\lambda \rightarrow 1$?



Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

- Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (1000^2 + 0.01^2)$
- Since $\beta_2 = 1000$ is much larger than $\beta_1 = 0.01$, ridge regression will prioritize reducing β_2 over β_1 .

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

- Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (1000^2 + 0.01^2)$
- Since $\beta_2 = 1000$ is much larger than $\beta_1 = 0.01$, ridge regression will prioritize reducing β_2 over β_1 .
- Will this actually produce good MSE for a fixed λ?

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

- Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (1000^2 + 0.01^2)$
- Since $\beta_2 = 1000$ is much larger than $\beta_1 = 0.01$, ridge regression will prioritize reducing β_2 over β_1 .
- Will this actually produce good MSE for a fixed λ ?
 - Only if standard deviation of x₂ is much, much larger than that of x₁

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

What type of models will ridge regression prefer (in terms of β_1 and β_2)?

- Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (1000^2 + 0.01^2)$
- Since $\beta_2 = 1000$ is much larger than $\beta_1 = 0.01$, ridge regression will prioritize reducing β_2 over β_1 .
- Will this actually produce good MSE for a fixed λ ?
 - Only if standard deviation of x_2 is much, much larger than that of x_1

Ridge regression is most efficient if predictors are standardarized first.

Suppose X_1 and X_2 are non-standardized predictors and the best fitting linear model is

 $\hat{y} = 10 + 0.01x_1 + 1000x_2$

What type of models will ridge regression prefer (in terms of β_1 and β_2)?

- Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (1000^2 + 0.01^2)$
- Since $\beta_2 = 1000$ is much larger than $\beta_1 = 0.01$, ridge regression will prioritize reducing β_2 over β_1 .
- Will this actually produce good MSE for a fixed λ ?
 - Only if standard deviation of x_2 is much, much larger than that of x_1

Ridge regression is most efficient if predictors are standardarized first.

$$\mathsf{z}_{ij} = rac{\mathsf{x}_{ij} - ar{\mathsf{x}}_j}{\hat{\sigma}_j}$$

Where x_{ij} is the *i*th observation of the *j*th predictor, \bar{x}_j is the sample mean of the *j*th predictor, and $\hat{\sigma}_j$ is the sample st. dev. of the *j*th predictor.

Section 2

Ridge Regression in R

The Data

The video_games dataset contains sales information and attributes for a random selection of 1000 video games.

• Suppose we want to predict Global_Sales based on NA_Sales, EU_Sales, JP_Sales, Critic_Score, User_Score, and Rating.

The Data

The video_games dataset contains sales information and attributes for a random selection of 1000 video games.

• Suppose we want to predict Global_Sales based on NA_Sales, EU_Sales, JP_Sales, Critic_Score, User_Score, and Rating.

## # A tibble: 6 x 8											
##	Name	Global_Sales	NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score	Rating			
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>			
## 1	Rayman~	0.07	0.06	0.02	0	75	7.9	E			
## 2	Army o~	0.28	0.11	0.11	0.01	58	6.7	М			
## 3	Forza ~	1.4	0.5	0.78	0.01	86	8.2	E10+			
## 4	Street~	4.16	2.03	1.04	0.580	94	7.3	Т			
## 5	X-Men ~	0.2	0.15	0.03	0	55	8.1	E10+			
## 6	Bomber~	0.08	0.06	0.02	0	70	7.9	E			

The Data

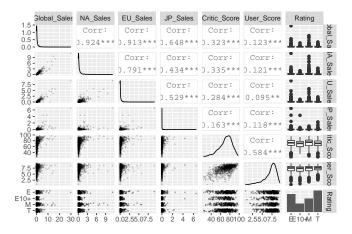
The video_games dataset contains sales information and attributes for a random selection of 1000 video games.

• Suppose we want to predict Global_Sales based on NA_Sales, EU_Sales, JP_Sales, Critic_Score, User_Score, and Rating.

## #	## # A tibble: 6 x 8											
##	Name	Global_Sales	NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score	Rating				
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>				
## 1	Rayman~	0.07	0.06	0.02	0	75	7.9	E				
## 2	Army o~	0.28	0.11	0.11	0.01	58	6.7	М				
## 3	Forza ~	1.4	0.5	0.78	0.01	86	8.2	E10+				
## 4	Street~	4.16	2.03	1.04	0.580	94	7.3	Т				
## 5	X-Men ~	0.2	0.15	0.03	0	55	8.1	E10+				
## 6	Bomber~	0.08	0.06	0.02	0	70	7.9	E				

• What are some possible problems with the full model?

Exploration



First, we perform some preliminary data formatting:

First, we perform some preliminary data formatting:

```
x<-model.matrix(Global_Sales ~. - Name, data = video_games)[,-1]
y<-video_games$Global_Sales
head(x)</pre>
```

##		NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score	RatingE10+	RatingM	RatingT
##	1	0.06	0.02	0.00	75	7.9	0	0	0
##	2	0.11	0.11	0.01	58	6.7	0	1	0
##	3	0.50	0.78	0.01	86	8.2	1	0	0
##	4	2.03	1.04	0.58	94	7.3	0	0	1
##	5	0.15	0.03	0.00	55	8.1	1	0	0
##	6	0.06	0.02	0.00	70	7.9	0	0	0

First, we perform some preliminary data formatting:

```
x<-model.matrix(Global_Sales ~. - Name, data = video_games)[,-1]
y<-video_games$Global_Sales
head(x)</pre>
```

##		NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score	RatingE10+	RatingM	RatingT
##	1	0.06	0.02	0.00	75	7.9	0	0	0
##	2	0.11	0.11	0.01	58	6.7	0	1	0
##	3	0.50	0.78	0.01	86	8.2	1	0	0
##	4	2.03	1.04	0.58	94	7.3	0	0	1
##	5	0.15	0.03	0.00	55	8.1	1	0	0
##	6	0.06	0.02	0.00	70	7.9	0	0	0

• The model.matrix function creates a matrix of predictors and converts all categorical variables to dummy variables

First, we perform some preliminary data formatting:

```
x<-model.matrix(Global_Sales ~. - Name, data = video_games)[,-1]
y<-video_games$Global_Sales
head(x)</pre>
```

##		NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score	RatingE10+	RatingM	RatingT
##	1	0.06	0.02	0.00	75	7.9	0	0	0
##	2	0.11	0.11	0.01	58	6.7	0	1	0
##	3	0.50	0.78	0.01	86	8.2	1	0	0
##	4	2.03	1.04	0.58	94	7.3	0	0	1
##	5	0.15	0.03	0.00	55	8.1	1	0	0
##	6	0.06	0.02	0.00	70	7.9	0	0	0

 The model.matrix function creates a matrix of predictors and converts all categorical variables to dummy variables

We also create vector grid of suitable tuning parameters λ .

[1] 1000000000 7564633276 5722367659 4328761281 3274549163 2477076356

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

We use the glmnet function in the glmnet package in order to perform Ridge Regression for a variety of values of the tuning parameter λ .

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

 Applying the coef function to the glmnet object gives a matrix of regression coefficients, one column for each value of lambda and one row for each predictor (and intercept)

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- Applying the coef function to the glmnet object gives a matrix of regression coefficients, one column for each value of lambda and one row for each predictor (and intercept)
- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- Applying the coef function to the glmnet object gives a matrix of regression coefficients, one column for each value of lambda and one row for each predictor (and intercept)
- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO
- By default, glmnet standardizes observations. To use unstandardized obs. add standardize = FALSE

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- Applying the coef function to the glmnet object gives a matrix of regression coefficients, one column for each value of lambda and one row for each predictor (and intercept)
- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO
- By default, glmnet standardizes observations. To use unstandardized obs. add standardize = FALSE
- Here, we gave a specific range of values for the tuning parameter. But if no lambda value is supplied, the function will automatically select a range.

Manipulating output of glmnet

coef(ridge_mod)[,1:4]

## 9 x 4 sparse	Matrix of clas	ss "dgCMatrix"		
##	s0	s1	s2	s3
<pre>## (Intercept)</pre>	8.162200e-01	8.162200e-01	8.162200e-01	8.162200e-01
## NA_Sales	3.412480e-10	4.511098e-10	5.963407e-10	7.883273e-10
## EU_Sales	4.792437e-10	6.335319e-10	8.374919e-10	1.107115e-09
## JP_Sales	5.824358e-10	7.699458e-10	1.017823e-09	1.345502e-09
<pre>## Critic_Score</pre>	7.209905e-12	9.531071e-12	1.259951e-11	1.665582e-11
## User_Score	2.582969e-11	3.414533e-11	4.513812e-11	5.966994e-11
## RatingE10+	-5.247474e-11	-6.936852e-11	-9.170109e-11	-1.212235e-10
## RatingM	7.685481e-11	1.015975e-10	1.343060e-10	1.775446e-10
## RatingT	-6.427287e-11	-8.496495e-11	-1.123187e-10	-1.484787e-10

Manipulating output of glmnet

```
coef(ridge_mod)[,1:4]
```

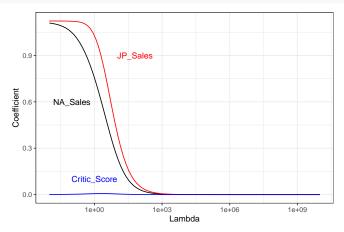
##	9 x 4 sparse	Matrix of clas	ss "dgCMatrix"				
##		s0	s1	s2	s3		
##	(Intercept)	8.162200e-01	8.162200e-01	8.162200e-01	8.162200e-01		
##	NA_Sales	3.412480e-10	4.511098e-10	5.963407e-10	7.883273e-10		
##	EU_Sales	4.792437e-10	6.335319e-10	8.374919e-10	1.107115e-09		
##	JP_Sales	5.824358e-10	7.699458e-10	1.017823e-09	1.345502e-09		
##	Critic_Score	7.209905e-12	9.531071e-12	1.259951e-11	1.665582e-11		
##	User_Score	2.582969e-11	3.414533e-11	4.513812e-11	5.966994e-11		
##	RatingE10+	-5.247474e-11	-6.936852e-11	-9.170109e-11	-1.212235e-10		
##	RatingM	7.685481e-11	1.015975e-10	1.343060e-10	1.775446e-10		
##	RatingT	-6.427287e-11	-8.496495e-11	-1.123187e-10	-1.484787e-10		
ridge_mod <mark>\$</mark> lambda[75]							

[1] 10.72267

coef(ridge_mod)[,75]

##	(Intercept)	NA_Sales	EU_Sales	JP_Sales	Critic_Score	User_Score
##	0.239041734	0.234144568	0.325084954	0.386330686	0.004219627	0.012114496
##	RatingE10+	RatingM	RatingT			
##	-0.030652286	0.042868156	-0.037871886			

The effects of ridge regression



Optimizing the tuning parameter

```
Which performs better, the model with \lambda \approx 10000 or \lambda \approx 10?

set.seed(11)

video_games_trn<-video_games %>% sample_frac(.75)

video_games_tst<-anti_join(video_games, video_games_trn)

x_trn<-model.matrix(Global_Sales ~. - Name, data = video_games_trn)[,-1]

y_trn<-video_games_trn%Global_Sales

x_tst<-model.matrix(Global_Sales ~. - Name, data = video_games_tst)[,-1]

y_tst<-video_games_tst%Global_Sales

ridge_mod_trn <- glmnet(x_trn, y_trn, alpha = 0, lambda = grid)

pred_10 <- predict(ridge_mod_trn, s = 75, newx = x_tst)

pred_10k <- predict(ridge_mod_trn, s = 50, newx = x_tst)
```

Optimizing the tuning parameter

```
Which performs better, the model with \lambda \approx 10000 or \lambda \approx 10?
set.seed(11)
video games trn<-video games %>% sample frac(.75)
video games tst <- anti join (video games, video games trn)
x trn<-model.matrix(Global Sales ~. - Name, data = video games trn)[,-1]
v trn<-video games trn$Global Sales
x tst<-model.matrix(Global Sales ~. - Name, data = video games tst)[,-1]
v tst<-video games tst$Global Sales
ridge_mod_trn <- glmnet(x_trn, y_trn, alpha = 0, lambda = grid)
pred_10 <- predict(ridge_mod_trn, s = 75, news = x_tst)</pre>
pred_10k <- predict(ridge_mod_trn, s = 50, news = x_tst)</pre>
MSE 10 < -mean((y tst - pred 10)^2)
MSE 10k < -mean((y tst - pred 10k)^2)
data.frame(MSE 10, MSE 10k)
##
       MSE 10 MSE 10k
```

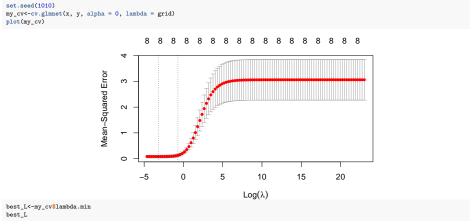
1 1.364439 1.291877

Optimizing the tuning parameter, cont'd

We can use the cv.glmnet function to perform cross-validation to compare MSE across all values of λ

Optimizing the tuning parameter, cont'd

We can use the cv.glmnet function to perform cross-validation to compare MSE across all values of λ



[1] 0.04037017