Logistic Regression II

Nate Wells

Math 243: Stat Learning

October 2nd, 2020

Outline

In today's class, we will...

• Implement Logistic Regression in R

Section 1

Creating Logistic Models

Logistic Regression

Let Y be a binary categorical and define p(X) = P(Y = 1 | X). Suppose that the log odds of Y = 1 is linear in the predictors X_1, X_2, \ldots, X_p .

Logistic Regression

Let Y be a binary categorical and define p(X) = P(Y = 1 | X). Suppose that the log odds of Y = 1 is linear in the predictors X_1, X_2, \ldots, X_p .

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots \beta_p X_p$$

Logistic Regression

Let Y be a binary categorical and define p(X) = P(Y = 1 | X). Suppose that the log odds of Y = 1 is linear in the predictors X_1, X_2, \ldots, X_p .

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots \beta_p X_p$$

Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

• We need to estimate the parameters β_0, β_1 based on training data.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

The likelihood function:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

The likelihood function:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

• The goal is to choose \hat{eta}_0 and \hat{eta}_1 so as to maximize ℓ

The Unsinkable Example

The Titanic data set contains information on passengers of the Titanic

## ##	row col 37 name del	arsing failures. expected actual file imiter or quote M 'data/titanic.csv' imiter or quote 'data/titanic.csv'
	D 4 040	-
	Rows: 1,313	
##	Columns: 11	
##	<pre>\$ row.names</pre>	<pre><dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17</dbl></pre>
##	<pre>\$ pclass</pre>	<chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st", "</chr>
##	<pre>\$ survived</pre>	<pre><dbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1,</dbl></pre>
##	\$ name	<chr> "Allen, Miss Elisabeth Walton", "Allison, Miss Helen Lora</chr>
##	\$ age	<pre><dbl> 29.0000, 2.0000, 30.0000, 25.0000, 0.9167, 47.0000, 63.00</dbl></pre>
##	<pre>\$ embarked</pre>	<chr> "Southampton", "Southampton", "Southampton", "Southampton</chr>
##	<pre>\$ home.dest</pre>	<chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montr</chr>
##	\$ room	<chr> "B-5", "C26", "C26", "C26", "C22", "E-12", "D-7", "A-36",</chr>
##	<pre>\$ ticket</pre>	<chr> "24160 L221", NA, NA, NA, NA, NA, "13502 L77", NA, NA, NA</chr>
##	<pre>\$ boat</pre>	<chr> "2", NA, "(135)", NA, "11", "3", "10", NA, "2", "(22)", "</chr>
##	\$ sex	<chr> "female", "female", "male", "female", "male", "male", "fe</chr>

What relationship can we discover between survival, sex, and age?

Data Processing

summary(Titanic)

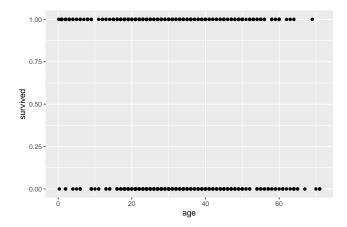
##	row.names	pclass	survived	name
##	Min. : 1	Length:1313	Min. :0.000	Length:1313
##	1st Qu.: 329	Class :character	1st Qu.:0.000	Class :character
##	Median : 657	Mode :character	Median :0.000	Mode :character
##	Mean : 657		Mean :0.342	
##	3rd Qu.: 985		3rd Qu.:1.000	
##	Max. :1313		Max. :1.000	
##				
##	age	embarked	home.dest	room
##	Min. : 0.1667	7 Length:1313	Length:1313	Length: 1313
##	1st Qu.:21.0000	O Class :characte:	r Class :chara	cter Class :character
##	Median :30.0000) Mode :characte:	r Mode :chara	cter Mode :character
##	Mean :31.1942	-		
##	3rd Qu.:41.0000			
##	Max. :71.0000)		
##	NA's :680			
##	ticket	boat	sex	
##	Length:1313	Length:1313		
##		er Class :charact		
##	Mode :characte	er Mode :charact	er Mode :char	acter
##				
##				
##				
##				

What do we do about those NA's?

```
library(tidyr)
Titanic1<-Titanic %>% drop_na(age)
```

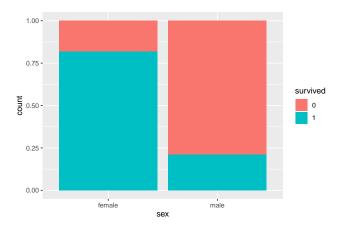
Children first?

Titanic1 %>% ggplot(aes(x = age, y = survived))+ geom_point()



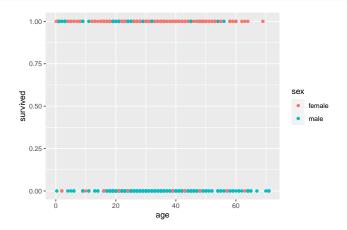
Women First?

```
Titanic1 %>% mutate(survived = as.factor(survived)) %>%
ggplot( aes( x = sex, fill = survived))+
geom_bar(position = "fill")
```



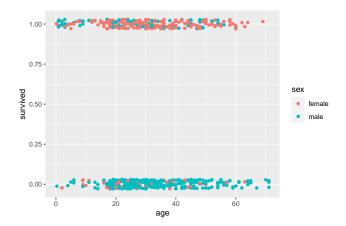
Women and Children First?

Titanic1 %>% ggplot(aes(x = age, y = survived, color = sex))+ geom_point()



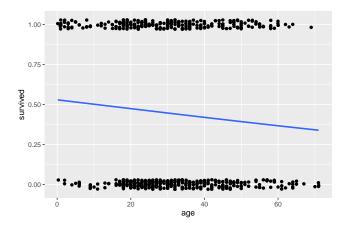
Women and Children First?

Titanic1 %>% ggplot(aes(x = age, y = survived, color = sex))+ geom_jitter(height =



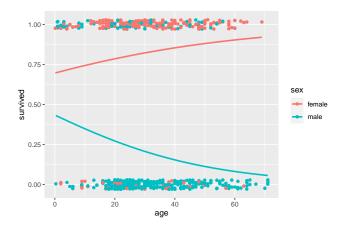
Logistic Model 1

```
Titanic1 %>% ggplot( aes( x = age, y = survived ))+
geom_jitter(height = 0.03) +
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)
```



Logistic Models 2 and 3

Titanic1 %>% ggplot(aes(x = age, y = survived, color = sex))+
geom_jitter(height = 0.03) +
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)



R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	0.11719513	0.187746466	0.6242202	0.53248299
##	age	-0.01102924	0.005492735	-2.0079686	0.04464663

R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

##EstimateStd. ErrorzvaluePr(>|z|)## (Intercept)0.117195130.1877464660.62422020.53248299## age-0.011029240.005492735-2.00796860.04464663In $\frac{p(Age)}{1-p(Age)} = 0.11 - 0.01 \cdot Age$

R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

Since $e^{0.011} = 1.01106$, increasing age by 1 year decreases survival probability by 1.106%

R code for Multiple Logistic Models

```
logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(logreg)$coefficients</pre>
```

##		Estimate	Std. Error	z value	Pr(> z)
##	(Intercept)	1.9158497	0.278035089	6.890676	5.552794e-12
##	age	-0.0129209	0.006863803	-1.882469	5.977237e-02
##	sexmale	-2.8415031	0.209063920	-13.591552	4.494495e-42

R code for Multiple Logistic Models

```
logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(logreg)$coefficients</pre>
```

 ##
 Estimate
 Std. Error
 z value
 $\Pr(>|z|)$

 ## (Intercept)
 1.9158497
 0.278035089
 6.890676
 5.552794e-12

 ## age
 -0.0129209
 0.006863803
 -1.882469
 5.977237e-02

 ## sexmale
 -2.8415031
 0.209063920
 -13.591552
 4.494495e-42

 In
 $\frac{p(X)}{1-p(X)}$ = 1.91 - 0.012 \cdot Age - 2.85 \cdot Male

R code for Multiple Logistic Models

```
logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(logreg)$coefficients</pre>
```

 ##
 Estimate
 Std. Error
 z value
 $\Pr(>|z|)$

 ## (Intercept)
 1.9158497
 0.278035089
 6.890676
 5.552794e-12

 ## age
 -0.0129209
 0.006863803
 -1.882469
 5.977237e-02

 ## sexmale
 -2.8415031
 0.209063920
 -13.591552
 4.494495e-42

 In
 $\frac{p(X)}{1-p(X)}$ = 1.91 - 0.012 \cdot Age - 2.85 \cdot Male

What is the survival probability for a male child of age 5?

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if odds} \geq 1, \ 0, & ext{if odds} < 1 \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \\ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if odds} \geq 1, \\ 0, & ext{if odds} < 1 \end{cases}$$

$$\hat{Y} = \begin{cases} 1, & \text{if log odds } \ge 0, \\ 0, & \text{if log odds } < 0 \end{cases}$$

Suppose we have 10 hypothetical passengers with the following age/sex combinations: ${\tt passengers}$

##		age	sex
##	1	10	male
##	2	14	female
##	3	18	male
##	4	22	male
##	5	26	female
##	6	30	male
##	7	34	male
##	8	38	male
##	9	42	female
##	10	46	female

What are their survival log odds? predict(logreg, passengers)

1 2 3 4 5 6 7 8
-1.054862 1.734957 -1.158230 -1.209913 1.579906 -1.313280 -1.364964 -1.416647
9 10
1.373172 1.321488

```
What are their survival log odds? predict(logreg, passengers)
```

2 3 4 5 6 7 1 8 ## -1.054862 1.734957 -1.158230 -1.209913 1.579906 -1.313280 -1.364964 -1.416647 ## 9 10 ## 1.373172 1.321488

Survival probabilities?

predict(logreg, passengers, type = "response")

 ##
 1
 2
 3
 4
 5
 6
 7
 8

 ##
 0.2582925
 0.8500454
 0.2389891
 0.2297164
 0.8291913
 0.2119384
 0.2034347
 0.1951877

 ##
 9
 10

 ##
 0.7978922
 0.7894292

```
What are their survival log odds? predict(logreg, passengers)
```

2 3 4 5 6 7 ## 1 8 ## -1.054862 1.734957 -1.158230 -1.209913 1.579906 -1.313280 -1.364964 -1.416647 ## 9 10 ## 1.373172 1.321488 Survival probabilities? predict(logreg, passengers, type = "response") 3 ## 1 2 5 6 7 0.2582925 0.8500454 0.2389891 0.2297164 0.8291913 0.2119384 0.2034347 0.1951877 ## ## 9 10 ## 0.7978922 0.7894292 Classification? ifelse(predict(logreg, passengers, type = "response") >= .5, 1, 0) ## 2 3 5 6 8 9 10 - 7 1 0 0 1 0 0 0 1 1 ## 0

Confusion Tables

```
How well does our model do on training data?
probs<-predict(logreg, Titanic1, type = "response")
preds<-ifelse(probs >= .5, 1, 0)
```

```
conf_log <- table(preds, Titanic1$survived)</pre>
```

conf_log

##
preds 0 1
0 308 82
1 44 199

Confusion Tables

```
How well does our model do on training data?
```

```
probs<-predict(logreg, Titanic1, type = "response")
preds<-ifelse(probs >=.5, 1, 0)
conf_log <- table(preds, Titanic1$survived)
conf_log</pre>
```

##
preds 0 1
0 308 82
1 44 199

Training Error rate:

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

Confusion Tables

```
How well does our model do on training data?
```

```
probs<-predict(logreg, Titanic1, type = "response")
preds<-ifelse(probs >=.5, 1, 0)
conf_log <- table(preds, Titanic1$survived)
conf_log</pre>
```

##
preds 0 1
0 308 82
1 44 199

Training Error rate:

$$\text{Error rate} = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

```
n <- length(Titanic1$survived)
false_pos <- conf_log[1,2]
false_neg <- conf_log[2,1]
error <- 1/n *(false_pos + false_neg)
error</pre>
```

[1] 0.1990521

A better confusion matrix

The confusionMatrix function in the caret package provides a confusion matrix along withe relevant statistics:

```
library(caret)
confusionMatrix(data = factor(preds) , reference = factor(Titanic1$survived) )
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 308 82
            1 44 199
##
##
                  Accuracy : 0.8009
##
##
                    95% CI : (0.7677, 0.8314)
##
       No Information Rate : 0.5561
       P-Value [Acc > NTR] : < 2.2e-16
##
##
##
                     Kappa : 0.5912
##
##
    Moneman's Test P-Value : 0.0009799
##
##
               Sensitivity : 0.8750
##
               Specificity : 0.7082
##
            Pos Pred Value : 0.7897
##
            Neg Pred Value : 0.8189
##
                Prevalence : 0.5561
##
            Detection Rate : 0.4866
##
      Detection Prevalence : 0.6161
##
         Balanced Accuracy : 0.7916
##
##
          'Positive' Class · 0
##
```

Sensitivity: Rate of correct positive identification

• Type II Error rate: 1 – Sensitivity

Specificity: Rate of correct negative identification

• Type I Error rate: 1 – Specificity

Sensitivity: Rate of correct positive identification

• Type II Error rate: 1 – Sensitivity

Specificity: Rate of correct negative identification

• Type I Error rate: 1 – Specificity

By changing our classification cutoff, we can increase sensitivity to the detriment of specificity (or vice versa)

• But the tradeoff is non-linear

Sensitivity: Rate of correct positive identification

• Type II Error rate: 1 – Sensitivity

Specificity: Rate of correct negative identification

• Type I Error rate: 1 – Specificity

By changing our classification cutoff, we can increase sensitivity to the detriment of specificity (or vice versa)

- But the tradeoff is non-linear
 - Increasing specificity by .1 may decrease sensitivity by .15 when specificity is .8
 - But the same increase in specificity may decrease sensitivity by .25 when specificity is .9.

Sensitivity: Rate of correct positive identification

• Type II Error rate: 1 – Sensitivity

Specificity: Rate of correct negative identification

• Type I Error rate: 1 – Specificity

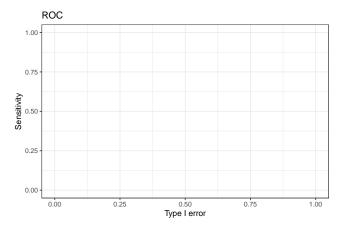
By changing our classification cutoff, we can increase sensitivity to the detriment of specificity (or vice versa)

- But the tradeoff is non-linear
 - Increasing specificity by .1 may decrease sensitivity by .15 when specificity is .8
 - But the same increase in specificity may decrease sensitivity by .25 when specificity is .9.

We measure the relative effect of sensitivity and specificity using an ROC curve

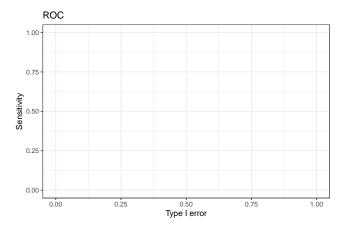
ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type I error rate, based on classification probabilities.



ROC Curves

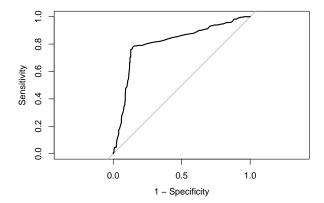
A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type I error rate, based on classification probabilities.



Poll: For a perfectly accurate model, what is the expected area under the ROC curve?

ROC Curves in R

The roc function in the pROC package can create ROC curves. library(pROC) curve <- roc(response = Titanic1\$survived, predictor = probs) plot(curve, legacy.axes=TRUE)



Mushroom Hunting

The mushrooms data contains information on several species of mushrooms, including edibility.

Rows: 8,124

Columns: 23 ## \$ class

- 1	ππ	Ψ	CIUSS	von v	P, o, o, P, o, o, o,	• ,
÷	##	\$	`cap-shape`	<chr></chr>	"x", "x", "b", "x", "x", "x", "b", '	ъ",
÷	##	\$	`cap-surface`	<chr></chr>	"s", "s", "s", "y", "s", "y", "s", "	'y",
÷	##	\$	`cap-color`	<chr></chr>	"n", "y", "w", "w", "g", "y", "w", "	'w",
÷	##	\$	bruises	<1g1>	TRUE, TRUE, TRUE, TRUE, FALSE, TRUE,	TRU
÷	##	\$	odor	<chr></chr>	"p", "a", "l", "p", "n", "a", "a", '	'1",
÷	##	\$	`gill-attachment`	<1g1>	FALSE, FALSE, FALSE, FALSE, FALSE, F	ALSE
÷	##	\$	`gill-spacing`	<chr></chr>	"c", "c", "c", "c", "w", "c", "c", "	'c",
÷	##	\$	`gill-size`	<chr></chr>	"n", "b", "b", "n", "b", "b", "b", "	ъ",
÷	##	\$	`gill-color`	<chr></chr>	"k", "k", "n", "n", "k", "n", "g", "	'n",
÷	##	\$	`stalk-shape`	<chr></chr>	"e", "e", "e", "e", "t", "e", "e", "	'e",
÷	##	\$	`stalk-root`	<chr></chr>	"e", "c", "c", "e", "e", "c", "c", "	'c",
÷	##	\$	`stalk-surface-above-ring`	<chr></chr>	"s", "s", "s", "s", "s", "s", "s", "	's",
÷	##	\$	`stalk-surface-below-ring`	<chr></chr>	"s", "s", "s", "s", "s", "s", "s", "	's",
÷	##	\$	`stalk-color-above-ring`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w", "	'w",
ŝ	##	\$	`stalk-color-below-ring`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w", "	'w",
÷	##	\$	`veil-type`	<chr></chr>	"p", "p", "p", "p", "p", "p", "p", "	'p",
÷	##	\$	`veil-color`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w", "	'w",
÷	##	\$	`ring-number`	<chr></chr>	"o", "o", "o", "o", "o", "o", "o", "	'o",
÷	##	\$	`ring-type`	<chr></chr>	"p", "p", "p", "p", "e", "p", "p", "	'p",
÷	##	\$	`spore-print-color`	<chr></chr>	"k", "n", "n", "k", "n", "k", "k", "	'n",
ş	##	\$	population	<chr></chr>	"s", "n", "n", "s", "a", "n", "n", "	's",
ş	##	\$	habitat	<chr></chr>	"u", "g", "m", "u", "g", "g", "m", '	'm",

Mushroom Hunting

The mushrooms data contains information on several species of mushrooms, including edibility.

Rows: 8,124

Columns: 23

##	\$ class	<chr></chr>	"p", "e", "e", "p", "e", "e", "e", "e",
##	\$ `cap-shape`	<chr></chr>	"x", "x", "b", "x", "x", "x", "b", "b",
##	\$ `cap-surface`	<chr></chr>	"s", "s", "s", "y", "s", "y", "s", "y",
##	\$ `cap-color`	<chr></chr>	"n", "y", "w", "w", "g", "y", "w", "w",
##	\$ bruises	<1g1>	TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRU
##	\$ odor	<chr></chr>	"p", "a", "l", "p", "n", "a", "a", "l",
##	\$ `gill-attachment`	<1g1>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
##	\$ `gill-spacing`	<chr></chr>	"c", "c", "c", "c", "w", "c", "c", "c",
##	\$ `gill-size`	<chr></chr>	"n", "b", "b", "n", "b", "b", "b", "b",
##	\$ `gill-color`	<chr></chr>	"k", "k", "n", "n", "k", "n", "g", "n",
##	\$ `stalk-shape`	<chr></chr>	"e", "e", "e", "e", "t", "e", "e", "e",
##	\$ `stalk-root`	<chr></chr>	"e", "c", "c", "e", "e", "c", "c", "c",
##	\$ `stalk-surface-above-ring`	<chr></chr>	"s", "s", "s", "s", "s", "s", "s", "s",
##	\$ `stalk-surface-below-ring`	<chr></chr>	"s", "s", "s", "s", "s", "s", "s", "s",
##	\$ `stalk-color-above-ring`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w",
##	\$ `stalk-color-below-ring`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w",
##	\$ `veil-type`	<chr></chr>	"p", "p", "p", "p", "p", "p", "p",
##	\$ `veil-color`	<chr></chr>	"w", "w", "w", "w", "w", "w", "w",
##	\$ `ring-number`	<chr></chr>	"o", "o", "o", "o", "o", "o", "o",
##	\$ `ring-type`	<chr></chr>	"p", "p", "p", "p", "e", "p", "p", "p",
##	\$ `spore-print-color`	<chr></chr>	"k", "n", "n", "k", "n", "k", "k", "n",
##	\$ population	<chr></chr>	"s", "n", "n", "s", "a", "n", "n", "s",
##	\$ habitat	<chr></chr>	"u", "g", "m", "u", "g", "g", "m", "m",

Can we predict whether a mushroom is edible?