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Outline

In today’s class, we will. . .
• Implement KNN in R
• Analyze the performance of classification models
• Work in groups on a classification problem
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Section 1

KNN in R
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KNN

Recall: The KNN model estimates the conditional probability P(Y = Aj |X) as

P(Y = Aj |X = x0) ≈
1
K

∑
i∈N0

I(yi = Aj)

In R, we use the knn function in the class library.

The knn function fits a model and makes predictions all in one command.
• Unlike the lm and glm, which first fit a model and then make predictions using the

predict function
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Simulated Data

Suppose X |Y = 1 ∼ N(0, 1) and X |Y = 0 ∼ N(1, 1), and that each class is of the same
size.

• We’ll also subset our data into test and training sets.
set.seed(100)
n<-100

Y<-rep(c(0,1), c(n/2, n/2))
X<-c(rnorm(n/2, 0, 1), rnorm(n/2, 1, 1) )

d<-data.frame(X,Y)

library(dplyr)
train_d<-d %>% sample_frac(.75)
test_d<-anti_join(d, train_d)
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Scatterplot
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The KNN Model

The knn function takes 4 arguments.

1 A data frame containing the predictors associated to the training data

2 A data frame containing the predictors associated to the test data

3 A vector containing the response associated to the training data

4 A value for K , the number of nearest neighbors.

library(class)
set.seed(200)

pred_3<-knn(train_d %>% select(X),
test_d %>% select(X),
train_d$Y,
3)

pred_3

## [1] 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1
## Levels: 0 1
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Results K = 3
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##
## 0 1
## 0 7 6
## 1 2 10

## [1] 0.68
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Results K = 1
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Section 2

Model Performance
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The Unsinkable Example

The Titanic data set contains information on passengers of the Titanic
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A better confusion matrix

The confusionMatrix function in the caret package provides a confusion matrix along
withe relevant statistics:
library(caret)
confusionMatrix(data = factor(preds) , reference = factor(Titanic1$survived) )

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 308 82
## 1 44 199
##
## Accuracy : 0.8009
## 95% CI : (0.7677, 0.8314)
## No Information Rate : 0.5561
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.5912
##
## Mcnemar's Test P-Value : 0.0009799
##
## Sensitivity : 0.8750
## Specificity : 0.7082
## Pos Pred Value : 0.7897
## Neg Pred Value : 0.8189
## Prevalence : 0.5561
## Detection Rate : 0.4866
## Detection Prevalence : 0.6161
## Balanced Accuracy : 0.7916
##
## 'Positive' Class : 0
##
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Sensitivity and Specificity

Sensitivity: Rate of correct positive identification
• Type II Error rate: 1− Sensitivity

Specificity: Rate of correct negative identification
• Type I Error rate: 1− Specificity

By changing our classification cutoff, we can increase sensitivity to the detriment of
specificity (or vice versa)
• But the tradeoff is non-linear

• Increasing specificity by .1 may decrease sensitivity by .15 when specificity is .8
• But the same increase in specificity may decrease sensitivity by .25 when specificity is .9.

When might we want high specificity? High sensitivity?

What are the ramifications of changing the classification cutoff?
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type I error
rate, based on classification probabilities.
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Poll: For a perfectly accurate model, what is the expected area under the ROC curve?
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ROC Curves in R

The roc function in the pROC package can create ROC curves.
library(pROC)
roc_curve <- roc(response = Titanic1$survived, predictor = probs)
ggroc(roc_curve, legacy.axes=TRUE)
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auc(roc_curve)

## Area under the curve: 0.8095
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ROC Curves in R

What threshold corresponds to the “kink” in the ROC curve?
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coords(roc_curve, "best", ret = "threshold")

## threshold
## 1 0.2533806
coords(roc_curve, .253)

## threshold specificity sensitivity
## 1 0.253 0.8522727 0.7829181
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Section 3

Additional Practice
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Mushroom Hunting

The mushrooms data set on the schedule page of the course website contains information
on several species of mushrooms, including edibility.

Can we predict whether a mushroom is edible?
• Create a Logistic Regression model using your choice of a small subset of predictors

• You will need to recode your response class to take values 0 or 1.

• Then create an ROC curve and select a threshold that seems appropriate for this
situation.
• Time permitting, create a KNN model for various values of K and compare to the
logistic regression model.
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