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LDA

Outline

In today’s class, we will. . .
• Discuss LDA theory and motivation
• Implement LDA in R
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LDA

Logistic Regression, KNN, and Bayes’ Classifier

Recall that for a classification problem, the average test error rate is minimized using the
Bayes’ classifier:

f (x0) = argmaxjP(Y = Aj |X = x0)

Both KNN and Logistic regression attempt to estimate the conditional probability p(X):
• Logistic regression:

p(X) = eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• KNN:
p(X) = 1

K
∑
i∈N0

I(yi = Aj)
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Bayes’ Rule

For any events A and B,
P(A|B) = P(B|A)P(A)

P(B)

Example
Suppose a test for a certain disease has specificity .9 and sensitivity .8, and that the
disease has prior prevalence of 0.01. Find the probability that an individual who tests
positive for the disease actually has the disease.
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The Bayesian Flip

We want P(Y = Aj |X = x0). Using Bayes’ Rule:

P(Y = Aj |X = x0) =P(X = x0 |Y = Aj)P(Y = Aj)
P(X = X0)

= P(X = x0 |Y = Aj)P(Y = Aj)∑
i P(X = X0|Y = Ai )P(Y = Ai )

We estimate the conditional probabilitity of the response using. . .
• The conditional distribution P(X = x0 |Y = Aj) of each predictor
• The prior distribution πi = P(Y = Ai ) of the response

In practice, we don’t have access to the conditional distributions of the predictors, so need
to estimate them based on data.
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LDA

Suppose we have just one predictor X and a multi-level categorical response Y .

What is the most “natural” assumption for the conditional distribution of X?

X |Y = Aj ∼ N(µj , σj)

If X is normal, its conditional density is given by

P(X = x |Y = Aj) = fj(x) = 1√
2πσ2

j
e−(x−µj )2/2σ2

j

If we assume all conditional distributions have the same variance σ2
j = σ2, we can simplify

our model.
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Log-Likelihood Ratio

To determine to which class an observation belongs, based on the conditional distribution
of predictors, we consider likelihood ratio:

P(Y = Aj |X = x0)
P(Y = Ak |X = x0) = P(X = x0 |Y = Aj)P(Y = Aj)/P(X = x0)

P(X = x0 |Y = Ak)P(Y = Ak)/P(X = x0)

= P(X = x0 |Y = Aj)P(Y = Aj)
P(X = x0 |Y = Ak)P(Y = Ak)

= e−(x0−µj )2/2σ2
πj

e−(x0−µk )2/2σ2πk

The log-liklihood ratio is obtained by taking natural log above:

ln P(Y = Aj |X = x0)
P(Y = Ak |X = x0) =(x0 − µk)2/2σ2 − (x0 − µj)2/2σ2 + lnπj − lnπk

The decision boundary between Aj and Ak is the point c where

(c − µk)2/2σ2 + lnπj = (c − µj)2/2σ2 + lnπk
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Binary Classfication

Suppose Y is binary, and that each of X |Y = 0 and X |Y = 1 are Normal with common
variance σ and means µ1 and µ2. Moreover, assume a uniform prior π1 = π0 = 1

2

Solve for c in
(c − µk)2/2σ2 + lnπj = (c − µj)2/2σ2 + lnπk

We get c = µ1+µ2
2
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Plots

Suppose X |Y = 0 ∼ N(0, 1) and X |Y = 1 ∼ N(4, 1)

X|Y = 0 X|Y = 1

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
x

f1
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What is LDA?

If we knew the conditional distribution of the predictors, we could easily create decision
boundaries.

• But we only have data, so we need to estimate those distributions.

A normal distribution requires only 2 parameters: µ and σ.
• We need one estimate of µ for each level of Y .
• Since we assumed each conditional distribution had the same variance, we need only 1
estimate for σ

LDA is an algorithm for obtaining these estimates and then classifying based on
log-likelihood ratio:

µ̂j = 1
nj

∑
i :yi =Ak

xi

σ̂2 = 1
n − `

∑̀
j=1

∑
i :yi =Ak

(xi − µ̂j)2
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The Discriminant

Rather than comparing log likelihoods, we could instead look at the log conditional
probability for each level. This function δj(x) is called the discriminant for level j:

δj(x) = x · µj

σ2 −
µ2

j

2σ2 + lnπj

We can then assign an observation to the class whose discriminant is largest.

Why is LDA called Linear Discriminant Analysis?
• Because the discriminant function is linear in x .
• Using this classification algorithm will result in linear decision boundaries.
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Simulated Data

Suppose X |Y = 0 ∼ N(1, 1) and X |Y = 1 ∼ N(3, 1), and that each class is of the same
size.

0.0
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Find Estimates

Estimates for µj .
mu0<-d %>% filter(Y == 0) %>% summarise(mu = mean(X) ) %>% pull()
mu1<-d %>% filter(Y == 1) %>% summarise(mu = mean(X) ) %>% pull()
data.frame(mu0, mu1)

## mu0 mu1
## 1 0.6587046 3.068198

Estimates for σ.
ssx <- d %>% group_by(Y) %>% summarize(ssx = var(X) * (n - 1)) %>% pull()
ssx

## [1] 74.31554 94.41776
sigma2 <- sum(ssx)/(n - 2)
sigma2

## [1] 1.721768

Nate Wells (Math 243: Stat Learning) Linear Discriminant Analysis October 7th, 2020 14 / 16



LDA

Find Estimates

Estimates for µj .
mu0<-d %>% filter(Y == 0) %>% summarise(mu = mean(X) ) %>% pull()
mu1<-d %>% filter(Y == 1) %>% summarise(mu = mean(X) ) %>% pull()
data.frame(mu0, mu1)

## mu0 mu1
## 1 0.6587046 3.068198

Estimates for σ.
ssx <- d %>% group_by(Y) %>% summarize(ssx = var(X) * (n - 1)) %>% pull()
ssx

## [1] 74.31554 94.41776
sigma2 <- sum(ssx)/(n - 2)
sigma2

## [1] 1.721768

Nate Wells (Math 243: Stat Learning) Linear Discriminant Analysis October 7th, 2020 14 / 16



LDA

The discriminant function

Write a function to create discriminant functions:
my_lda <- function(x, pi, mu, sig_sq) {

x * (mu/sig_sq) - (mu^2)/(2 * sig_sq) + log(pi)
}

Create discriminant function for each class:
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Plot
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