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Outline

In today's class, we will. ..
® Create a handmade LDA model
® Discuss LDA with two or more predictors
® |Implement LDA in R
® Define QDA and compare to LDA
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Handmade LDA model
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Section 1

Handmade LDA model
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Handmade LDA model
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LDA

Suppose Y is a categorical variable with ¢ levels, and for each level A;, that

X|Y = A ~ N(uy, o).
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Handmade LDA model
0O@0000

LDA

Suppose Y is a categorical variable with ¢ levels, and for each level A;, that
X|Y = A; ~ N(, o).

The discriminant function

§j(x):Xva—£7T‘12+ln7rj

can be used to classify an observation by choosing the level A; whose discriminant is
largest at x.
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Handmade LDA model
0O@0000

LDA

Suppose Y is a categorical variable with ¢ levels, and for each level A;, that

X|Y = A ~ N(uy, o).

The discriminant function

§j(x):Xva—£7T‘12+ln7rj

can be used to classify an observation by choosing the level A; whose discriminant is
largest at x.

We estimate the values of y; and o from the sample data:

ﬂj:n% Zx,-

iyi=Ak
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Handmade LDA model
0O@0000

LDA

Suppose Y is a categorical variable with ¢ levels, and for each level A;, that

X|Y = A ~ N(uy, o).

The discriminant function

woow
0j(x) = O—éfitszrlmrj

can be used to classify an observation by choosing the level A; whose discriminant is
largest at x.

We estimate the values of y; and o from the sample data:

Z x

’,V/

& :nfﬁz Z(X’_IU’J

J=1 iyj=
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Handmade LDA model
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Simulated Data

Suppose X|Y =0~ N(1,1) and X|Y =1~ N(3,1), and that mp = .75 and m; = .25.
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Handmade LDA model

00@000

Simulated Data

Suppose X|Y =0~ N(1,1) and X|Y =1~ N(3,1), and that mp = .75 and m; = .25.
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g 0.2 0
° [] 2

0.14

0.0 o» 90 90O 9N ®

0 2 4
X

What feature of the graph shows that mp = .75 and m = .257

Nate Wells (Math 243: Stat Learning)
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Handmade LDA model
000e00

Find Estimates

Estimates for y; and 7;

pi0 <- 3/4

pil <= 1/4

mu0<-d %>% filter(Y == 0) %>/, summarise(mu = mean(X) ) %>% pull()
mui<-d %>% filter(Y == 1) %>% summarise(mu = mean(X) ) %>% pull()
data.frame(mu0, mul)

#it mu0 mul
## 1 1.42849 3.168335

Nate Wells (Math 243: Stat Learning) Extentions of Discriminant Analysis October 9th, 2020



Handmade LDA model
000e00

Find Estimates

Estimates for y; and 7;

pi0 <- 3/4

pil <- 1/4

mu0<-d %>% filter(Y == 0) %>/, summarise(mu = mean(X) ) %>% pull()
mul<-d %>% filter(Y == 1) %>/, summarise(mu = mean(X) ) %>% pull()
data.frame(mu0, mul)

## mu0 mul

## 1 1.42849 3.168335

Estimates for o.

ssx <- d %>% group_by(Y) %>/ summarize(ssx = var(X) * (n() - 1), n()) %>% pull(2,)
ssX

## [1] 148.19201 23.70648

sigma2 <- sum(ssx)/(n - 2)

sigma2

## [1] 1.754066
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Handmade LDA model
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The discriminant function

Solve for intersection of discriminant functions:
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Handmade LDA model
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The discriminant function

Solve for intersection of discriminant functions:

2 2

M1 251 120] Ho
c— ——+Ihm=c— —— +Innw
o2 202 ! 02 202 0
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Handmade LDA model
0000e0

The discriminant function

Solve for intersection of discriminant functions:

2 2

M1 251 120] Ho
c— — +Inm =c— — —= +1Inm
02 202 ! 02 202 0

2a2|n:—g+p%—u%

2(p1 — po)
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Handmade LDA model
0000e0

The discriminant function

Solve for intersection of discriminant functions:

2 2

M1 251 120] Ho
c— ——+Ihm=c— —— +Innw
o2 202 ! 02 202 0

2a2|n:—g+p%—u%

2(p1 — po)

c<- (2*sigma2*log(.75/.25) + mul"2 - mu0~2)/(2*(mul - mu0))
c

## [1] 3.406004
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Handmade LDA model
0000e0

The discriminant function

Solve for intersection of discriminant functions:

2 2
M1 251 120] Ho
c— ———+Inm=c— — —= +Inm
o2 202 ! 02 202 0
2a2|n:—g+p%—u%
2(p1 — po)
c<- (2*sigma2*log(.75/.25) + mul"2 - mu0~2)/(2*(mul - mu0))

c

## [1] 3.406004

Write a function to create discriminant functions:

my_lda <- function(x, pi, mu, sigma2) {
x * (mu/sigma2) - (mu~2)/(2 * sigma2) + log(pi)
}
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Handmade LDA model
0000e0

The discriminant function

Solve for intersection of discriminant functions:

2 2
M1 251 120] Ho
c— ———+Inm=c— — —= +Inm
o2 202 ! 02 202 0
2a2|n:—g+p%—u%
2(p1 — po)
c<- (2*sigma2*log(.75/.25) + mul"2 - mu0~2)/(2*(mul - mu0))

c

## [1] 3.406004

Write a function to create discriminant functions:

my_lda <- function(x, pi, mu, sigma2) {
x * (mu/sigma2) - (mu~2)/(2 * sigma2) + log(pi)
}

Create discriminant function for each class:

d0 <- my_lda(d$X, piO, muO, sigma2)
dl <- my_lda(d$X, pil, mul, sigma2)
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Handmade LDA model
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Handmade LDA model
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Why don’t the discriminant functions intersect at the same point as the density curves?
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LDA with multiple predictors
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Section 2

LDA with multiple predictors
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LDA with multiple predictors
Oe000000

Multivariate Gaussian Distributions

A vector X = (X1, Xz,...,X,) is said to have multivariate gaussian distribution if all linear
combinations of coordinates alX; + a2 X> + - - - + ap X, have a Normal distribution.
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LDA with multiple predictors
Oe000000

Multivariate Gaussian Distributions

A vector X = (X1, Xz,...,X,) is said to have multivariate gaussian distribution if all linear
combinations of coordinates alX; + a2 X> + - - - + ap X, have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector u = (1, 2, - - ., 4p) and
covariance matrix

Var(Xl) COV(X17 Xg) e COV()(l7 Xp)
Cov(Xa, X1) Var(X2) <o Cov(X2, Xp)
Y= ) . .
Cov(Xp, X1)  Cov(Xp, X2) Var(Xp)
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LDA with multiple predictors
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Multivariate Gaussian Distributions

A vector X = (X1, Xz,...,X,) is said to have multivariate gaussian distribution if all linear
combinations of coordinates alX; + a2 X> + - - - + ap X, have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector u = (1, 2, - - ., 4p) and
covariance matrix

Var(Xl) COV(X17 Xg) e COV()(l7 Xp)
Cov(Xa, X1) Var(X2) <o Cov(X2, Xp)
Y= ) . .
Cov(Xp, X1)  Cov(Xp, X2) Var(Xp)

The multivariate Gaussian density f on x € R” is

1

1 Te-—1
) = Gryraees e (- 36-mTE =)
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LDA with multiple predictors
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Multivariate Scatterplot
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LDA with multiple predictors
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LDA with multiple predictors

Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X) with conditional density f;, where X is
common to all conditional densities.

Nate Wells (Math 243: Stat Learning) Extentions of Discriminant Analysis October 9th, 2020 12/22



LDA with multiple predictors
[e]e]e] lelele]e]

LDA with multiple predictors

Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X) with conditional density f;, where X is
common to all conditional densities.

As before, we consider the log-likelihood ratio:

P(Y = A | X=x)

N Y = A X=x) ")
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LDA with multiple predictors

Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X) with conditional density f;, where X is
common to all conditional densities.

As before, we consider the log-likelihood ratio:

P(Y = A | X=x)

N Y = A X=x) ")

The discriminant function §;(x) for x € R is

5i(x) = x"E 7y — %MJTZ%M + In;
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LDA with multiple predictors

Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X) with conditional density f;, where X is
common to all conditional densities.

As before, we consider the log-likelihood ratio:

P(Y = A | X=x)

N Y = A X=x) ")

The discriminant function §;(x) for x € R is
_ 1 _
5i(x) = x"E 7y — ENJ'TZ '+ Inm

We classify a point x by assigning it to the level with largest discriminant function at x.

/22
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LDA with multiple predictors

Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X) with conditional density f;, where X is
common to all conditional densities.

As before, we consider the log-likelihood ratio:

P(Y = A/ | X =x)
P(Y =AX=x)  f(x)m

In

The discriminant function §;(x) for x € R is
_ 1 _
5i(x) = x"E 7y — ENJ'TZ '+ Inm
We classify a point x by assigning it to the level with largest discriminant function at x.

Decision boundaries are given by solving for intersections of the (’2’) pairs of discriminant
functions:

x'¥ uj—EuJZ ,u,—&—lnﬂ'J—xTZ uk—f/uckz ,uk—l—lnﬂk

22
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LDA with multiple predictors
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Classification

Let's investigate the classic iris dataset:
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Classification

LDA with multiple predictors
[e]e]e]e] Telele]

Let's investigate the classic iris dataset:

##  Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 4.8
## 2 6.1
## 3 5.7
## 4 6.8
## 5 6.7

1.6

RGNS
® © kN

0.2 setosa
1.4 versicolor
1.3 versicolor
2.3 virginica
1.8 virginica

Can we classify Species based on Sepal.Length and Sepal.Width?

Nate Wells (Math 243: Stat Learning)
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LDA with multiple predictors
[ee]e]ele] lele]

Iris Plot
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Where should we place our linear decision boundaries?
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LDA with multiple predictors
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LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the 1da
function in the mass package.

library(MASS)

mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)

mlda_pred <- predict(mlda)

conf_mlda <- table(mlda_pred$class,iris$Species)

conf_mlda

##

#i# setosa versicolor virginica
##  setosa 49 0 0
##  versicolor 1 36 15
##  virginica 0 14 35
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LDA with multiple predictors
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LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the 1da
function in the mass package.

library(MASS)

mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)

mlda_pred <- predict(mlda)

conf_mlda <- table(mlda_pred$class,iris$Species)

conf_mlda

##

#i# setosa versicolor virginica
##  setosa 49 0 0
##  versicolor 1 36 15
##  virginica 0 14 35

It looks like LDA had a hard time distinguishing between vesicolor and virginica.

Nate Wells (Math 243: Stat Learning) Extentions of Discriminant Analysis October 9th, 2020 15 /22



LDA with multiple predictors
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LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the 1da
function in the mass package.

library(MASS)

mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)

mlda_pred <- predict(mlda)

conf_mlda <- table(mlda_pred$class,iris$Species)

conf_mlda

##

#i# setosa versicolor virginica
##  setosa 49 0 0
##  versicolor 1 36 15
##  virginica 0 14 35

It looks like LDA had a hard time distinguishing between vesicolor and virginica.

Overall error rate
(sum(conf_mlda) - sum(diag(conf_mlda)))/sum(conf_mlda)

## [1] 0.2
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Iris Decision Boundaries

LDA with multiple predictors
O000000e

4.5
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Section 3

QDA
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Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about
bias (Y) or variance (N) for an LDA model?
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Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about
bias (Y) or variance (N) for an LDA model?

® With lots of data, variance is likely low. But the modeling restrictions of LDA might
make bias problematic.
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bias (Y) or variance (N) for an LDA model?

® With lots of data, variance is likely low. But the modeling restrictions of LDA might
make bias problematic.

® We might be able to improve MSE by considering a more complex model.
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Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about
bias (Y) or variance (N) for an LDA model?

® With lots of data, variance is likely low. But the modeling restrictions of LDA might
make bias problematic.

® We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors
P(X = x|Y = y;) had the same variance (or covariance matrix, for p > 2).
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Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about
bias (Y) or variance (N) for an LDA model?

® With lots of data, variance is likely low. But the modeling restrictions of LDA might
make bias problematic.

® We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors
P(X = x|Y = y;) had the same variance (or covariance matrix, for p > 2).

Lifting this restriction leads to Quadratic Discriminant Analysis (QDA)
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Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X;) with conditional density ;.

Nate Wells (Math 243: Stat Learning) Extentions of Discriminant Analysis October 9th, 2020 19/22



Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X;) with conditional density ;.

As with LDA, we consider the log likelihood ratios

P(Y=Ai|X=x) _ In fi(x)m;

N Y = A X =x) " ()
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Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X;) with conditional density ;.

As with LDA, we consider the log likelihood ratios

P(Y = A [ X =x) fi(x)m;
=1In

P(Y = Ak | X =x) fie(x) i

But now when we substitute the formula for multivariate densities f;, the variance (or
covariance) terms in numerator and denominator do not cancel.

In
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Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X;) with conditional density ;.

As with LDA, we consider the log likelihood ratios

P(Y = A [ X =x) fi(x)m;
=1In

P(Y = Ak | X =x) fie(x) i

But now when we substitute the formula for multivariate densities f;, the variance (or
covariance) terms in numerator and denominator do not cancel.

In

This leads to the QDA discriminant function d;(x):

1 _ _ 1 _ 1
0j(x) = —EXTZJ- "x + xT):j Yy — EM’TZJ Yy — 5 IndetY; + Inm;
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Suppose that Y is categorical with £ levels and that X = (Xi,..., X,) are a vector of
predictors. Assume that X|Y = A; ~ N(u;, X;) with conditional density ;.

As with LDA, we consider the log likelihood ratios

P(Y = A [ X =x) fi(x)m;
=1In

P(Y = Ak | X =x) fie(x) i

But now when we substitute the formula for multivariate densities f;, the variance (or
covariance) terms in numerator and denominator do not cancel.

In

This leads to the QDA discriminant function d;(x):

1 _ _ 1 _ 1
0j(x) = —EXTZJ- "x + xT):j Yy — EM’TZJ Yy — 5 IndetY; + Inm;

Which simplifes to the following when p = 1:

di(x) = fxzi_ +xH M—J f%InajJrlmrj
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We use the gda function in the mass package.
library(MASS)

mgda <- gda(Species ~ Sepal.Length + Sepal.Width,data
mgda_pred <- predict(mqda)
conf_mgda <- table(mgda_pred$class,iris$Species)
conf_mqda

##
##
#i#
##
##

setosa versicolor virginica

setosa 49 0 0
versicolor 1 37 16
virginica 0 13 34

Nate Wells (Math 243: Stat Learning)

Extentions of Discriminant Analysis

October 9th, 2020

20/22



We use the gda function in the mass package.
library(MASS)

mgda <- gda(Species ~ Sepal.Length + Sepal.Width,data
mgda_pred <- predict(mqda)
conf_mgda <- table(mgda_pred$class,iris$Species)
conf_mqda

##
##
#i#
##
##

setosa versicolor virginica

setosa 49 0 0
versicolor 1 37 16
virginica 0 13 34

How did we do?

(sum(conf_mgda) - sum(diag(conf_mqgda)))/sum(conf_mqda)

## [1] 0.2
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QDA Decision Boundaries
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LDA - QDA Comparison

4.5
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< 354 Species
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LDA - QDA Comparison

4.5
4.04
< 354 Species
=]
§=]
= setosa
g ® versicolor
O 3.0
2] virginica
2.54
2.0

6
Sepal.Length

Which model do you think would perform better on test data? LDA(Y) or QDA (N)
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