Extentions of Discriminant Analysis

Nate Wells

Math 243: Stat Learning

October 9th, 2020

Outline

In today's class, we will...

- Create a handmade LDA model
- Discuss LDA with two or more predictors
- Implement LDA in R
- Define QDA and compare to LDA

Section 1

Handmade LDA model

Suppose Y is a categorical variable with ℓ levels, and for each level A_{j}, that

$$
X \mid Y=A_{j} \sim N\left(\mu_{j}, \sigma\right)
$$

LDA

Suppose Y is a categorical variable with ℓ levels, and for each level A_{j}, that

$$
X \mid Y=A_{j} \sim N\left(\mu_{j}, \sigma\right)
$$

The discriminant function

$$
\delta_{j}(x)=x \cdot \frac{\mu_{j}}{\sigma^{2}}-\frac{\mu_{j}^{2}}{2 \sigma^{2}}+\ln \pi_{j}
$$

can be used to classify an observation by choosing the level A_{j} whose discriminant is largest at x.

LDA

Suppose Y is a categorical variable with ℓ levels, and for each level A_{j}, that

$$
X \mid Y=A_{j} \sim N\left(\mu_{j}, \sigma\right)
$$

The discriminant function

$$
\delta_{j}(x)=x \cdot \frac{\mu_{j}}{\sigma^{2}}-\frac{\mu_{j}^{2}}{2 \sigma^{2}}+\ln \pi_{j}
$$

can be used to classify an observation by choosing the level A_{j} whose discriminant is largest at x.

We estimate the values of μ_{j} and σ from the sample data:

$$
\hat{\mu}_{j}=\frac{1}{n_{j}} \sum_{i: y_{i}=A_{k}} x_{i}
$$

LDA

Suppose Y is a categorical variable with ℓ levels, and for each level A_{j}, that

$$
X \mid Y=A_{j} \sim N\left(\mu_{j}, \sigma\right)
$$

The discriminant function

$$
\delta_{j}(x)=x \cdot \frac{\mu_{j}}{\sigma^{2}}-\frac{\mu_{j}^{2}}{2 \sigma^{2}}+\ln \pi_{j}
$$

can be used to classify an observation by choosing the level A_{j} whose discriminant is largest at x.

We estimate the values of μ_{j} and σ from the sample data:

$$
\begin{gathered}
\hat{\mu}_{j}=\frac{1}{n_{j}} \sum_{i: y_{i}=A_{k}} x_{i} \\
\hat{\sigma}^{2}=\frac{1}{n-\ell} \sum_{j=1}^{\ell} \sum_{i: y_{i}=A_{k}}\left(x_{i}-\hat{\mu_{j}}\right)^{2}
\end{gathered}
$$

Simulated Data

Suppose $X \mid Y=0 \sim N(1,1)$ and $X \mid Y=1 \sim N(3,1)$, and that $\pi_{0}=.75$ and $\pi_{1}=.25$.

Simulated Data

Suppose $X \mid Y=0 \sim N(1,1)$ and $X \mid Y=1 \sim N(3,1)$, and that $\pi_{0}=.75$ and $\pi_{1}=.25$.

What feature of the graph shows that $\pi_{0}=.75$ and $\pi_{1}=.25$?

Find Estimates

```
Estimates for \(\mu_{j}\) and \(\pi_{j}\)
pio <- 3/4
pi1 <- 1/4
mu0<-d \%>\% filter(Y == 0) \%>\% summarise(mu = mean(X) ) \%>\% pull()
mu1<-d \%>\% filter (Y == 1) \%>\% summarise(mu = mean(X) ) \%>\% pull()
data.frame(mu0, mu1)
\#\# mu0 mu1
\#\# 11.428493 .168335
```


Find Estimates

```
Estimates for }\mp@subsup{\mu}{j}{}\mathrm{ and }\mp@subsup{\pi}{j}{
pi0 <- 3/4
pi1 <- 1/4
mu0<-d %>% filter(Y == 0) %>% summarise(mu = mean(X) ) %>% pull()
mu1<-d %>% filter(Y == 1) %>% summarise(mu = mean(X) ) %>% pull()
data.frame(mu0, mu1)
## mu0 mu1
## 1 1.42849 3.168335
Estimates for }\sigma\mathrm{ .
ssx <- d %>% group_by(Y) %>% summarize(ssx = var(X) * (n() - 1), n()) %>% pull(2,)
ssx
## [1] 148.19201 23.70648
sigma2 <- sum(ssx)/(n - 2)
sigma2
## [1] 1.754066
```


The discriminant function

Solve for intersection of discriminant functions:

The discriminant function

Solve for intersection of discriminant functions:

$$
c \frac{\mu_{1}}{\sigma^{2}}-\frac{\mu_{1}^{2}}{2 \sigma^{2}}+\ln \pi_{1}=c \frac{\mu_{0}}{\sigma^{2}}-\frac{\mu_{0}^{2}}{2 \sigma^{2}}+\ln \pi_{0}
$$

The discriminant function

Solve for intersection of discriminant functions:

$$
\begin{gathered}
c \frac{\mu_{1}}{\sigma^{2}}-\frac{\mu_{1}^{2}}{2 \sigma^{2}}+\ln \pi_{1}=c \frac{\mu_{0}}{\sigma^{2}}-\frac{\mu_{0}^{2}}{2 \sigma^{2}}+\ln \pi_{0} \\
c=\frac{2 \sigma^{2} \ln \frac{\pi_{0}}{\pi_{1}}+\mu_{1}^{2}-\mu_{0}^{2}}{2\left(\mu_{1}-\mu_{0}\right)}
\end{gathered}
$$

The discriminant function

Solve for intersection of discriminant functions:

$$
\begin{aligned}
& \qquad c \frac{\mu_{1}}{\sigma^{2}}-\frac{\mu_{1}^{2}}{2 \sigma^{2}}+\ln \pi_{1}=c \frac{\mu_{0}}{\sigma^{2}}-\frac{\mu_{0}^{2}}{2 \sigma^{2}}+\ln \pi_{0} \\
& \qquad c=\frac{2 \sigma^{2} \ln \frac{\pi_{0}}{\pi_{1}}+\mu_{1}^{2}-\mu_{0}^{2}}{2\left(\mu_{1}-\mu_{0}\right)} \\
& \begin{array}{l}
c<-\left(2 * \operatorname{sigma} 2 * \log (.75 / .25)+\operatorname{mu} 1^{\wedge} 2-m u 0^{\wedge} 2\right) /(2 *(m u 1-\operatorname{mu} 0)) \\
\text { \#\# [1] } 3.406004
\end{array} \\
& \text { \# }
\end{aligned}
$$

The discriminant function

Solve for intersection of discriminant functions:

$$
\begin{gathered}
c \frac{\mu_{1}}{\sigma^{2}}-\frac{\mu_{1}^{2}}{2 \sigma^{2}}+\ln \pi_{1}=c \frac{\mu_{0}}{\sigma^{2}}-\frac{\mu_{0}^{2}}{2 \sigma^{2}}+\ln \pi_{0} \\
c=\frac{2 \sigma^{2} \ln \frac{\pi_{0}}{\pi_{1}}+\mu_{1}^{2}-\mu_{0}^{2}}{2\left(\mu_{1}-\mu_{0}\right)}
\end{gathered}
$$

$$
c<-(2 * \operatorname{sigma} 2 * \log (.75 / .25)+\operatorname{mu} 1 \sim 2-m u 0 \wedge 2) /(2 *(m u 1-m u 0))
$$

c
\#\# [1] 3.406004
Write a function to create discriminant functions:

```
my_lda <- function(x, pi, mu, sigma2) {
    x * (mu/sigma2) - (mu^2)/(2 * sigma2) + log(pi)
}
```


The discriminant function

Solve for intersection of discriminant functions:

$$
\begin{gathered}
c \frac{\mu_{1}}{\sigma^{2}}-\frac{\mu_{1}^{2}}{2 \sigma^{2}}+\ln \pi_{1}=c \frac{\mu_{0}}{\sigma^{2}}-\frac{\mu_{0}^{2}}{2 \sigma^{2}}+\ln \pi_{0} \\
c=\frac{2 \sigma^{2} \ln \frac{\pi_{0}}{\pi_{1}}+\mu_{1}^{2}-\mu_{0}^{2}}{2\left(\mu_{1}-\mu_{0}\right)}
\end{gathered}
$$

$$
c<-\left(2 * \operatorname{sigma} 2 * \log (.75 / .25)+\operatorname{mu} 1 \sim 2-m u 0 _2\right) /(2 *(m u 1-m u 0))
$$

c
\#\# [1] 3.406004
Write a function to create discriminant functions:

```
my_lda <- function(x, pi, mu, sigma2) {
    x * (mu/sigma2) - (mu^2)/(2 * sigma2) + log(pi)
}
```

Create discriminant function for each class:

```
dO <- my_lda(d$X, pi0, mu0, sigma2)
```

d1 <- my_lda(d\$X, pi1, mu1, sigma2)

Plots

Plots

Why don't the discriminant functions intersect at the same point as the density curves?

Section 2

LDA with multiple predictors

Multivariate Gaussian Distributions

A vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a 1 X_{1}+a_{2} X_{2}+\cdots+a_{p} X_{p}$ have a Normal distribution.

Multivariate Gaussian Distributions

A vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a 1 X_{1}+a_{2} X_{2}+\cdots+a_{p} X_{p}$ have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right)$ and covariance matrix

$$
\Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{p}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{p}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(X_{p}, X_{1}\right) & \operatorname{Cov}\left(X_{p}, X_{2}\right) & & \operatorname{Var}\left(X_{p}\right)
\end{array}\right)
$$

Multivariate Gaussian Distributions

A vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a 1 X_{1}+a_{2} X_{2}+\cdots+a_{p} X_{p}$ have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right)$ and covariance matrix

$$
\Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{p}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{p}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(X_{p}, X_{1}\right) & \operatorname{Cov}\left(X_{p}, X_{2}\right) & & \operatorname{Var}\left(X_{p}\right)
\end{array}\right)
$$

The multivariate Gaussian density f on $x \in \mathbb{R}^{p}$ is

$$
f(x)=\frac{1}{(2 \pi)^{p / 2}(|\operatorname{det} \Sigma|)^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Multivariate Scatterplot

LDA with multiple predictors

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma\right)$ with conditional density f_{j}, where Σ is common to all conditional densities.

LDA with multiple predictors

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma\right)$ with conditional density f_{j}, where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

LDA with multiple predictors

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma\right)$ with conditional density f_{j}, where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

The discriminant function $\delta_{j}(x)$ for $x \in \mathbb{R}^{p}$ is

$$
\delta_{j}(x)=x^{T} \Sigma^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}+\ln \pi_{j}
$$

LDA with multiple predictors

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma\right)$ with conditional density f_{j}, where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

The discriminant function $\delta_{j}(x)$ for $x \in \mathbb{R}^{p}$ is

$$
\delta_{j}(x)=x^{T} \Sigma^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}+\ln \pi_{j}
$$

We classify a point x by assigning it to the level with largest discriminant function at x.

LDA with multiple predictors

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma\right)$ with conditional density f_{j}, where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

The discriminant function $\delta_{j}(x)$ for $x \in \mathbb{R}^{p}$ is

$$
\delta_{j}(x)=x^{T} \Sigma^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}+\ln \pi_{j}
$$

We classify a point x by assigning it to the level with largest discriminant function at x.
Decision boundaries are given by solving for intersections of the $\binom{p}{2}$ pairs of discriminant functions:

$$
x^{T} \Sigma^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}+\ln \pi_{j}=x^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\ln \pi_{k}
$$

Classification

Let's investigate the classic iris dataset:

Classification

Let's investigate the classic iris dataset:

\#\#	Sepal.Length	Sepal.Width Petal.Length	Petal.Width	Species	
\#\# 1	4.8	3.4	1.6	0.2	setosa
\#\# 2	6.1	2.9	4.7	1.4 versicolor	
\#\# 3	5.7	2.8	4.1	1.3 versicolor	
\#\# 4	6.8	3.2	5.9	2.3	virginica
\#\# 5	6.7	2.5	5.8	1.8	virginica

Can we classify Species based on Sepal.Length and Sepal.Width?

Iris Plot

Where should we place our linear decision boundaries?

LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the lda function in the mass package.
library (MASS)
mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)
mlda_pred <- predict(mlda)
conf_mlda <- table(mlda_pred\$class,iris\$Species)
conf_mlda
\#\#

\#\#		setosa	versicolor	virginica
\#\#	setosa	49	0	0
\#\#	versicolor	1	36	15
\#\#	virginica	0	14	35

LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the lda function in the mass package.
library (MASS)
mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)
mlda_pred <- predict(mlda)
conf_mlda <- table(mlda_pred\$class,iris\$Species)
conf_mlda
\#\#

\#\#		setosa	versicolor	virginica
\#\#	setosa	49	0	0
\#\#	versicolor	1	36	15
\#\#	virginica	0	14	35

It looks like LDA had a hard time distinguishing between vesicolor and virginica.

LDA in R

It would be tedious to compute LDA discrimant functions by hand. So we use the lda function in the mass package.
library (MASS)
mlda <- lda(Species ~ Sepal.Length + Sepal.Width,data = iris)
mlda_pred <- predict(mlda)
conf_mlda <- table(mlda_pred\$class,iris\$Species)
conf_mlda
\#\#

\#\#		setosa	versicolor	virginica
\#\#	setosa	49	0	0
\#\#	versicolor	1	36	15
\#\#	virginica	0	14	35

It looks like LDA had a hard time distinguishing between vesicolor and virginica.
Overall error rate

```
(sum(conf_mlda) - sum(diag(conf_mlda)))/sum(conf_mlda)
```

\#\# [1] 0.2

Iris Decision Boundaries

Section 3

QDA

Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.

Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors $P\left(X=x \mid Y=y_{j}\right)$ had the same variance (or covariance matrix, for $p \geq 2$).

Generalized Model

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors $P\left(X=x \mid Y=y_{j}\right)$ had the same variance (or covariance matrix, for $p \geq 2$).
Lifting this restriction leads to Quadratic Discriminant Analysis (QDA)

QDA

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma_{j}\right)$ with conditional density f_{j}.

QDA

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma_{j}\right)$ with conditional density f_{j}.

As with LDA, we consider the log likelihood ratios

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

QDA

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma_{j}\right)$ with conditional density f_{j}.

As with LDA, we consider the log likelihood ratios

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

But now when we substitute the formula for multivariate densities f_{i}, the variance (or covariance) terms in numerator and denominator do not cancel.

QDA

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma_{j}\right)$ with conditional density f_{j}.

As with LDA, we consider the log likelihood ratios

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

But now when we substitute the formula for multivariate densities f_{i}, the variance (or covariance) terms in numerator and denominator do not cancel.

This leads to the QDA discriminant function $\delta_{j}(x)$:

$$
\delta_{j}(x)=-\frac{1}{2} x^{T} \Sigma_{j}^{-1} x+x^{T} \Sigma_{j}^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma_{j}^{-1} \mu_{j}-\frac{1}{2} \ln \operatorname{det} \Sigma_{j}+\ln \pi_{j}
$$

QDA

Suppose that Y is categorical with ℓ levels and that $X=\left(X_{1}, \ldots, X_{p}\right)$ are a vector of predictors. Assume that $X \mid Y=A_{j} \sim N\left(\mu_{j}, \Sigma_{j}\right)$ with conditional density f_{j}.

As with LDA, we consider the log likelihood ratios

$$
\ln \frac{P\left(Y=A_{j} \mid X=x\right)}{P\left(Y=A_{k} \mid X=x\right)}=\ln \frac{f_{j}(x) \pi_{j}}{f_{k}(x) \pi_{k}}
$$

But now when we substitute the formula for multivariate densities f_{i}, the variance (or covariance) terms in numerator and denominator do not cancel.

This leads to the QDA discriminant function $\delta_{j}(x)$:

$$
\delta_{j}(x)=-\frac{1}{2} x^{T} \Sigma_{j}^{-1} x+x^{T} \Sigma_{j}^{-1} \mu_{j}-\frac{1}{2} \mu_{j}^{T} \Sigma_{j}^{-1} \mu_{j}-\frac{1}{2} \ln \operatorname{det} \Sigma_{j}+\ln \pi_{j}
$$

Which simplifes to the following when $p=1$:

$$
\delta_{j}(x)=-x^{2} \frac{1}{2 \sigma_{j}}+x \frac{\mu_{j}}{\sigma_{j}}-\frac{\mu_{j}^{2}}{2 \sigma_{j}}-\frac{1}{2} \ln \sigma_{j}+\ln \pi_{j}
$$

In R

We use the qda function in the mass package.
library (MASS)
mqda <- qda(Species ~ Sepal.Length + Sepal.Width,data = iris)
mqda_pred <- predict(mqda)
conf_mqda <- table(mqda_pred\$class,iris\$Species)
conf_mqda

\#\#				
\#\#		setosa	versicolor	virginica
\#\#	setosa	49	0	0
\#\#	versicolor	1	37	16
\#\#	virginica	0	13	34

In R

We use the qda function in the mass package.
library (MASS)
mqda <- qda(Species ~ Sepal.Length + Sepal.Width,data = iris)
mqda_pred <- predict(mqda)
conf_mqda <- table(mqda_pred\$class,iris\$Species)
conf_mqda
\#\#

\#\#		setosa	versicolor	virginica
\#\#	setosa	49	0	0
\#\#	versicolor	1	37	16
\#\#	virginica	0	13	34

How did we do?
(sum(conf_mqda) - sum(diag(conf_mqda)))/sum(conf_mqda)
\#\# [1] 0.2

QDA Decision Boundaries

LDA - QDA Comparison

LDA - QDA Comparison

Which model do you think would perform better on test data? LDA(Y) or QDA (N)

