
Bagging and Random Forests Boosting

Bagging and Boosting

Nate Wells

Math 243: Stat Learning

November 11th, 2020

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 1 / 22

Bagging and Random Forests Boosting

Outline

In today’s class, we will. . .
• Discuss bagging and random forests as methods for reducing variance in decision trees
• Investigate boosting as an **learning* method for improving decision trees

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 2 / 22

Bagging and Random Forests Boosting

Section 1

Bagging and Random Forests

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 3 / 22

Bagging and Random Forests Boosting

Motivation

Can you assemble a collection of weak models and make them strong?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 4 / 22

Bagging and Random Forests Boosting

Motivation

Can you assemble a collection of weak models and make them strong?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 4 / 22

Bagging and Random Forests Boosting

Motivation

Does it always work?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 5 / 22

Bagging and Random Forests Boosting

Motivation

Does it always work?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 5 / 22

Bagging and Random Forests Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 6 / 22

Bagging and Random Forests Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?

• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 6 / 22

Bagging and Random Forests Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 6 / 22

Bagging and Random Forests Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?

• Difficult to interpret
• Theoretically properties less well-studied

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 6 / 22

Bagging and Random Forests Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 6 / 22

Bagging and Random Forests Boosting

Hand-drawn Example

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 7 / 22

Bagging and Random Forests Boosting

Random Forests in R

To create both bagged trees and random forests, we use the randomForest function in the
randomForest package in R:
library(randomForest)
rfmodel <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na)
rfmodel

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 1
##
Mean of squared residuals: 128.5166
% Var explained: 46.63

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 8 / 22

Bagging and Random Forests Boosting

Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,

ntrees = 10, mtry = 3)
rfmodel2

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees = 10, mtry = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
##
Mean of squared residuals: 147.265
% Var explained: 38.85

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 9 / 22

Bagging and Random Forests Boosting

Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,

ntrees = 10, mtry = 3)
rfmodel2

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees = 10, mtry = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
##
Mean of squared residuals: 147.265
% Var explained: 38.85

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 9 / 22

Bagging and Random Forests Boosting

Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,

ntrees = 10, mtry = 3)
rfmodel2

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees = 10, mtry = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
##
Mean of squared residuals: 147.265
% Var explained: 38.85

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 9 / 22

Bagging and Random Forests Boosting

Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,

ntrees = 10, mtry = 3)
rfmodel2

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees = 10, mtry = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
##
Mean of squared residuals: 147.265
% Var explained: 38.85

How can we create a bagged model using the randomForest function?

• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 9 / 22

Bagging and Random Forests Boosting

Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,

ntrees = 10, mtry = 3)
rfmodel2

##
Call:
randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees = 10, mtry = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
##
Mean of squared residuals: 147.265
% Var explained: 38.85

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 9 / 22

Bagging and Random Forests Boosting

Making predictions

So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, test_trees)

data.frame(my_preds,actual = test_trees$Pollution_Removal_oz) %>% head()

my_preds actual
1 14.141807 16.6
2 26.829172 14.7
3 5.344025 0.2
4 16.795818 15.0
5 25.090853 41.4
6 16.105992 10.5

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 10 / 22

Bagging and Random Forests Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 11 / 22

Bagging and Random Forests Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 11 / 22

Bagging and Random Forests Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 11 / 22

Bagging and Random Forests Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 11 / 22

Bagging and Random Forests Boosting

Importance in R

importance(rfmodel)

IncNodePurity
Tree_Height 85886.830
Crown_Base_Height 30087.052
Condition 3994.087

par(mfcol = c(1, 1), mar = c(1, 1, 1, 1))
varImpPlot(rfmodel)

Condition

Crown_Base_Height

Tree_Height

rfmodel

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 12 / 22

Bagging and Random Forests Boosting

Importance in R

importance(rfmodel)

IncNodePurity
Tree_Height 85886.830
Crown_Base_Height 30087.052
Condition 3994.087
par(mfcol = c(1, 1), mar = c(1, 1, 1, 1))
varImpPlot(rfmodel)

Condition

Crown_Base_Height

Tree_Height

rfmodel

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 12 / 22

Bagging and Random Forests Boosting

Section 2

Boosting

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 13 / 22

Bagging and Random Forests Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 14 / 22

Bagging and Random Forests Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.
• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 14 / 22

Bagging and Random Forests Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.
• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 14 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.

• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 15 / 22

Bagging and Random Forests Boosting

AdaBoost Graphic

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 16 / 22

Bagging and Random Forests Boosting

Boosting for regression

Boosting also works in the regression setting. The gradient boosting machine is a
boosting algorithm that works as follows:

1 Select tree depth D and number of iterations K .

2 Compute the average response ŷ and use this as the initial predicted value for each
observation

3 Compute the residual for each observation.

4 Fit a regression tree of depth D, using the residuals as the response.

5 Predict each observation using the regression tree from the previous step.

6 Update the predicted value of each observation by adding the previous iteration’s
predicted value to the predicted value generated in the previous step.

7 Repeat at total of K times.

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 17 / 22

Bagging and Random Forests Boosting

Brief Example

Compute the mean:
mu <- mean(my_trees_na$Pollution_Removal_oz)
mu

[1] 18.09656

Compute residuals:
boost_tree<- my_trees_na %>%

mutate(residuals1 = Pollution_Removal_oz - mu)

Fit a new tree
boost_tree_model<- tree(residuals1 ~ Crown_Base_Height ,

data = boost_tree)
pruned_boost_tree_model<-prune.tree(boost_tree_model, best = 2)

Predict
predictions2<- predict(pruned_boost_tree_model, data = boost_tree)

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 18 / 22

Bagging and Random Forests Boosting

Brief Example

Compute the mean:
mu <- mean(my_trees_na$Pollution_Removal_oz)
mu

[1] 18.09656

Compute residuals:
boost_tree<- my_trees_na %>%

mutate(residuals1 = Pollution_Removal_oz - mu)

Fit a new tree
boost_tree_model<- tree(residuals1 ~ Crown_Base_Height ,

data = boost_tree)
pruned_boost_tree_model<-prune.tree(boost_tree_model, best = 2)

Predict
predictions2<- predict(pruned_boost_tree_model, data = boost_tree)

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 18 / 22

Bagging and Random Forests Boosting

Brief Example

Compute the mean:
mu <- mean(my_trees_na$Pollution_Removal_oz)
mu

[1] 18.09656

Compute residuals:
boost_tree<- my_trees_na %>%

mutate(residuals1 = Pollution_Removal_oz - mu)

Fit a new tree
boost_tree_model<- tree(residuals1 ~ Crown_Base_Height ,

data = boost_tree)
pruned_boost_tree_model<-prune.tree(boost_tree_model, best = 2)

Predict
predictions2<- predict(pruned_boost_tree_model, data = boost_tree)

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 18 / 22

Bagging and Random Forests Boosting

Brief Example

Compute the mean:
mu <- mean(my_trees_na$Pollution_Removal_oz)
mu

[1] 18.09656

Compute residuals:
boost_tree<- my_trees_na %>%

mutate(residuals1 = Pollution_Removal_oz - mu)

Fit a new tree
boost_tree_model<- tree(residuals1 ~ Crown_Base_Height ,

data = boost_tree)
pruned_boost_tree_model<-prune.tree(boost_tree_model, best = 2)

Predict
predictions2<- predict(pruned_boost_tree_model, data = boost_tree)

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 18 / 22

Bagging and Random Forests Boosting

Brief Example

Compute the mean:
mu <- mean(my_trees_na$Pollution_Removal_oz)
mu

[1] 18.09656

Compute residuals:
boost_tree<- my_trees_na %>%

mutate(residuals1 = Pollution_Removal_oz - mu)

Fit a new tree
boost_tree_model<- tree(residuals1 ~ Crown_Base_Height ,

data = boost_tree)
pruned_boost_tree_model<-prune.tree(boost_tree_model, best = 2)

Predict
predictions2<- predict(pruned_boost_tree_model, data = boost_tree)

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 18 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 19 / 22

Bagging and Random Forests Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees

• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Pollution_Removal_oz ~., my_trees_na,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 2,
shrinkage = 0.02)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 20 / 22

Bagging and Random Forests Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Pollution_Removal_oz ~., my_trees_na,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 2,
shrinkage = 0.02)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 20 / 22

Bagging and Random Forests Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Pollution_Removal_oz ~., my_trees_na,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 2,
shrinkage = 0.02)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 20 / 22

Bagging and Random Forests Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Pollution_Removal_oz ~., my_trees_na,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 2,
shrinkage = 0.02)

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 20 / 22

Bagging and Random Forests Boosting

Summary Information

summary(boosted_tree)

C
on

di
tio

n
Tr

ee
_H

ei
gh

t

Relative influence

0 10 20 30 40 50 60 70

var rel.inf
Tree_Height Tree_Height 75.130159
Crown_Base_Height Crown_Base_Height 23.594814
Condition Condition 1.275027

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 21 / 22

Bagging and Random Forests Boosting

Boosted Tree vs. Random Forest

my_preds_rf<- predict(rfmodel, test_trees)
my_preds_bt<- predict(boosted_tree, test_trees)

MSE_rf <- mean((my_preds_rf - test_trees$Pollution_Removal_oz)^2)
MSE_bt <- mean((my_preds_bt - test_trees$Pollution_Removal_oz)^2)

data.frame(model = c("Random Forest", "Boosted Tree"), MSE = c(MSE_rf, MSE_bt))

model MSE
1 Random Forest 103.82926
2 Boosted Tree 99.15018

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 22 / 22

Bagging and Random Forests Boosting

Boosted Tree vs. Random Forest

my_preds_rf<- predict(rfmodel, test_trees)
my_preds_bt<- predict(boosted_tree, test_trees)

MSE_rf <- mean((my_preds_rf - test_trees$Pollution_Removal_oz)^2)
MSE_bt <- mean((my_preds_bt - test_trees$Pollution_Removal_oz)^2)

data.frame(model = c("Random Forest", "Boosted Tree"), MSE = c(MSE_rf, MSE_bt))

model MSE
1 Random Forest 103.82926
2 Boosted Tree 99.15018

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 11th, 2020 22 / 22

	Bagging and Random Forests
	Boosting

