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Principal Component Regression

Outline

In today’s class, we will. . .
• Discuss Principal Component Analysis as a means of dimensionality reduction for
regresion
• Implement PCR in R
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Section 1

Principal Component Regression
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Principal Component Regression

Dimensionality Reduction

Suppose you collect a sample of n observations on p predictors X1, . . . ,Xp, where p is
relatiely large. Suppose further that some of the predictors are correlated with one another.

• Any predictive model for a response Y based on all of the correlated variables will
underperform due to instability in parameter estimates.

It may be difficult to fit complex models accurately, given limited number of observatiosn
compared to predictors.
• If p is larger than n, it may not be possible to fit certain models to the data (for
example MLR models cannot be used)

One solution is to perform variable selection and drop some less useful predictors.
• But dropping variables completely loses possible valauable information.
• Instead, we can combine variables into new ones that adequately describe the variance
in the data, and drop those that have limited utility in explaining that variance.
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Principal Component Regression

PCA Overview

Consider the relationship between campaign ad spending and population size for 100 cities:

20

30

40

50

60

20 30 40 50 60
Population (ten thousands)

A
d 

S
pe

nd
in

g 
(t

ho
us

an
ds

 o
f d

ol
la

rs
)

What are the approximate standard deviations of ad spending and population?
## sd_Pop sd_Ad
## 1 8.981994 7.418227
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But how much of the variation in ad spending is just due to variation in population?

## R_sq
## 1 0.8238886
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Principal Component Regression

PCA Overview

Can we find a line along which the observations vary the most?

20

30

40

50

60

20 30 40 50 60
Population (ten thousands)

A
d 

S
pe

nd
in

g 
(t

ho
us

an
ds

 o
f d

ol
la

rs
)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 7 / 18



Principal Component Regression

PCA Overview

Can we find a line along which the observations vary the most?

20

30

40

50

60

20 30 40 50 60
Population (ten thousands)

A
d 

S
pe

nd
in

g 
(t

ho
us

an
ds

 o
f d

ol
la

rs
)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 7 / 18



Principal Component Regression

PCA Overview

How much variation occurs perpendicular to this line?
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Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.

• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.
• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.
• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.

• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.
• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.
• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.
• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.
• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.
• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.
• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Definition

The first principal component Z1 is the direction along which there is the greatest
variability in the data.
• That is, if we project the observations onto this line, the resulting projected
observations would have the greatest possible variance.
• Projecting a point onto a line amounts to finding the location on the line closest to
the given point.

We can express the first principal component as a linear combination of the centered
predictors Xi − X̄i , where φi1 ∈ R and φ2

11 + · · ·+ φ2
p1 = 1:

Z1 = φ11(X1 − X̄1) + φ21(X2 − X̄2) + · · ·+ φp1(Xp − X̄p)

• Alternatively, we could express Z1 as an affine linear combination of the predictors
themselves (affine meaning including a constant term)

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 9 / 18



Principal Component Regression

PCA Example

The first principal component
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Z1 = 0.8(Pop− 41.1) + 0.6(Ad− 40.4)
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Principal Component Regression

PCA Example

What is leftover?

−3

0

3

6

−20 −10 0 10 20
1st Principal Component

Le
fto

ve
rs

Nate Wells (Math 243: Stat Learning) Principal Component Regression November 16th, 2020 11 / 18



Principal Component Regression

Other Principal Components

In general, if we have p predictors, we can compute p distinct principal components:
Z1,Z2, . . . ,Zp.

The second principal component Z2 is a linear combination of the centered variables that is
• uncorrelated with the first principal component
• has the largest variance subject to this constraint.

For the case when p = 2, the 2nd principal component corresponds to the line
perpendicular to the line for the 1st principal component.

Generally, the kth principal component is obtained by finding a linear combination of
centered variables that is uncorrelated with all previous principal components, and has the
largest variance subject to this constraint.
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Principal Component Regression

PCA Example

The second principal component
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Z2 = 0.6(Pop− 41.1)− 0.8(Ad− 40.4)
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Principal Component Regression

Principal Comoponent Regression

The PCR approach to linear regression constructs the first M principal components
Z1, . . . ,ZM of a data set with p predictors (so M ≤ p), and then uses these as predictors
in a linear regression model.

• Goal: Use a small number of predictors which explain most of the variability in the
data set, as well as their relationship to the response.

In general, PCR tends to produce linear models with higher accuracy than models fit with
the original predictors.
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Principal Component Regression

Principal Component Regression in R

We can use the pcr function in the pls library to quickly perform PCR in R.

The Hitters data set from the ISLR package contains Salary and 18 other predictors for
263 baseball players
set.seed(1)
library(pls)
my_pcr <- pcr( Salary ~ ., data = Hitters, scale = T, validation = "CV")

• Setting scale = T standardizes each predictor
• Setting validation = "CV" causes pcr to compute the 10-fold CV error for each value of M

(number of principal components used)
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Principal Component Regression

PCR Results
summary(my_pcr)

## Data: X dimension: 263 19
## Y dimension: 263 1
## Fit method: svdpc
## Number of components considered: 19
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
## CV 452 352.5 351.6 352.3 350.7 346.1 345.5
## adjCV 452 352.1 351.2 351.8 350.1 345.5 344.6
## 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
## CV 345.4 348.5 350.4 353.2 354.5 357.5 360.3
## adjCV 344.5 347.5 349.3 351.8 353.0 355.8 358.5
## 14 comps 15 comps 16 comps 17 comps 18 comps 19 comps
## CV 352.4 354.3 345.6 346.7 346.6 349.4
## adjCV 350.2 352.3 343.6 344.5 344.3 346.9
##
## TRAINING: % variance explained
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
## X 38.31 60.16 70.84 79.03 84.29 88.63 92.26 94.96
## Salary 40.63 41.58 42.17 43.22 44.90 46.48 46.69 46.75
## 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
## X 96.28 97.26 97.98 98.65 99.15 99.47 99.75
## Salary 46.86 47.76 47.82 47.85 48.10 50.40 50.55
## 16 comps 17 comps 18 comps 19 comps
## X 99.89 99.97 99.99 100.00
## Salary 53.01 53.85 54.61 54.61

• Note: pcr reports RSE, so values need to be squared to get MSE.
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Principal Component Regression

Validation Plot

validationplot(my_pcr, val.type = "MSEP")
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• Note: The smallest CV error occurs at M = 16 (which is close to the maximum
number of predictors p = 19.)
• However, a relatively low CV error is also obtained at M = 6, suggesting fewer
components are sufficient
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number of predictors p = 19.)
• However, a relatively low CV error is also obtained at M = 6, suggesting fewer
components are sufficient
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Principal Component Regression

Comparative Performance

Live coding. A .Rmd file will be available on course website after class
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