Tidymodels

Nate Wells

Math 243: Stat Learning

November 30th, 2020

Outline

In today's class, we will...

- Discuss the tidymodels packages for model building in the tidyverse framework
- Implement PCA in R and interpret PCA in context

Section 1

Intro to tidymodels

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm	MASS stats gbm	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees)</pre>
tree M5P knn	treet RWeka class	<pre>predict(object, type = "prob") predict(object, type = "probability")</pre>

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm	MASS stats gbm	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees)</pre>
tree M5P knn	treet RWeka class	<pre>predict(object, type = "prob") predict(object, type = "probability")</pre>

Each method has significantly different methods for making class probability predictions

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm tree M5P knn	MASS stats gbm treet RWeka class	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees) predict(object, type = "prob") predict(object, type = "probability")</pre>

Each method has significantly different methods for making class probability predictions Additionally, each model takes in different types of data arguments (vectors, model matrices, data frames, model formulas)

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges.

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges. Additionally, tidymodels fits in the broader tidyverse framework:

- Packages and functions should be accessible and easily interpreted
- Outputs should be data frames (or tibbles) whenever possible
- Functions should be compatible with the %>% operator and functional programming
- Model objects should be compatible with ggplot2

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges. Additionally, tidymodels fits in the broader tidyverse framework:

- Packages and functions should be accessible and easily interpreted
- Outputs should be data frames (or tibbles) whenever possible
- Functions should be compatible with the %>% operator and functional programming
- Model objects should be compatible with ggplot2

tidymodels takes the mechanics from each individual model package (mass, tree, glm etc.) and unifies the input and output

The tidymodel framework

- Preprocess data using the recipes package
- Oreate training-test data splits using the rsample package
- 6 Give a model a functional form and specify fitting method using the parsnip package
- Ø Fit the model, tidy the results, and make predictions using the fit, tidy, and predict functions
- 6 Estimate model performance using cross-validation from the rsample package
- 6 Tune model parameters by adding model specifications

The tidymodel framework

- Preprocess data using the recipes package
- Oreate training-test data splits using the rsample package
- 6 Give a model a functional form and specify fitting method using the parsnip package
- Ø Fit the model, tidy the results, and make predictions using the fit, tidy, and predict functions
- 6 Estimate model performance using cross-validation from the rsample package
- 6 Tune model parameters by adding model specifications

We'll investigate each of these in-depth (although slightly out of order)

Section 2

Build a Model

Nate Wells (Math 243: Stat Learning)

The Data

The sea_urchins data set explores the relationship between feeding regimes and size of sea urchins over time:

```
sea_urchins<-read_csv("https://tidymodels.org/start/models/urchins.csv") %>%
setNames(c("food_regime", "initial_volume", "width")) %>%
mutate(food_regime = factor(food_regime, levels = c("Initial", "Low", "High")))
head(sea_urchins)
```

##	#	A tibble: 6	х З	
##		food_regime	initial_volume	width
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>
##	1	Initial	3.5	0.01
##	2	Initial	5	0.02
##	3	Initial	8	0.061
##	4	Initial	10	0.051
##	5	Initial	13	0.041
##	6	Initial	13	0.061

Scatterplot

Scatterplot

Goal: Predict width as a function of food_regime and initial_volume.

• Does an additive model seem appropriate?

Scatterplot

Goal: Predict width as a function of food_regime and initial_volume.

- Does an additive model seem appropriate?
- One option might be a linear model with interaction terms.

Nate Wells (Math 243: Stat Learning)

Build it!

Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
  set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

• Other engines are possible for linear_reg(): glmnet, stan, and more

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

• Other engines are possible for linear_reg(): glmnet, stan, and more

Now we create the model based on data using the fit function:

```
lm_mod<-linear_reg() %>%
set_engine("lm")
lm_fit<- lm_mod %>%
fit(width ~ initial_volume*food_regime, data = sea_urchins)
```

Results

The output of our lm_fit object:

lm_fit

```
## parsnip model object
##
## Fit time:
              3ms
##
## Call:
## stats::lm(formula = width ~ initial_volume * food_regime, data = data)
##
## Coefficients:
                       (Intercept)
                                                     initial volume
##
                         0.0331216
##
                                                          0.0015546
                                                    food_regimeHigh
##
                    food regimeLow
                         0.0197824
##
                                                          0.0214111
##
    initial volume:food regimeLow
                                   initial volume:food regimeHigh
##
                        -0.0012594
                                                          0.0005254
```

Summary Table

To get the traditional summary table:

```
tidy(lm_fit) %>% kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.0331216	0.0096186	3.4434873	0.0010020
initial_volume	0.0015546	0.0003978	3.9077643	0.0002220
food_regimeLow	0.0197824	0.0129883	1.5230864	0.1325145
food_regimeHigh	0.0214111	0.0145318	1.4733993	0.1453970
initial_volume:food_regimeLow	-0.0012594	0.0005102	-2.4685525	0.0161638
initial_volume:food_regimeHigh	0.0005254	0.0007020	0.7484702	0.4568356

Summary Table

To get the traditional summary table:

```
tidy(lm_fit) %>% kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.0331216	0.0096186	3.4434873	0.0010020
initial_volume	0.0015546	0.0003978	3.9077643	0.0002220
food_regimeLow	0.0197824	0.0129883	1.5230864	0.1325145
food_regimeHigh	0.0214111	0.0145318	1.4733993	0.1453970
initial_volume:food_regimeLow	-0.0012594	0.0005102	-2.4685525	0.0161638
initial_volume:food_regimeHigh	0.0005254	0.0007020	0.7484702	0.4568356

Note that the output is a data frame with standard column names

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

• First, we generate data:

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

initial_volume	food_regime
5	Initial
30	Initial
5	Low
30	Low
5	High
30	High

Make predictions

Then we make predictions

```
new_preds <- predict(lm_fit, new_data = new_urchins)
conf_int_preds<pre>redict(lm_fit, new_data = new_urchins, type = "conf_int")
new_preds %/% kable()
```

.pred
0.0408948
0.0797608
0.0543803
0.0617621
0.0649329
0.1169338

conf_int_preds %>% kable()

.pred_lower	.pred_upper
0.0251382	0.0566514
0.0688612	0.0906605
0.0396403	0.0691204
0.0522641	0.0712601
0.0483265	0.0815393
0.0999144	0.1339532

Combining Data and Predictions

Because the result of predict() is tidy, we can easily combine it with the original data: combined_data <- new_urchins %>% cbind(new_preds) %>% cbind(conf_int_preds) combined_data %>% kable()

initial_volume	food_regime	.pred	.pred_lower	.pred_upper
5	Initial	0.0408948	0.0251382	0.0566514
30	Initial	0.0797608	0.0688612	0.0906605
5	Low	0.0543803	0.0396403	0.0691204
30	Low	0.0617621	0.0522641	0.0712601
5	High	0.0649329	0.0483265	0.0815393
30	High	0.1169338	0.0999144	0.1339532

Predictions Plot

```
ggplot(combined_data, aes(x = food_regime)) +
geom_point(aes(y = .pred)) +
geom_errorbar(aes(ymin = .pred_lower, ymax = .pred_upper),width = .2) +
labs(y = "urchin size")+theme_bw()
```


Using a different engine

With only 3 predictors (food_regime, initial_width and the interaction term), its
unlikely our model will be improved by Penalized Regression. But let's try anyway:
glmnet_mod<- linear_reg(mixture = 1) %>% #mixture specifies alpha parameter
 set_engine("glmnet")

Using a different engine

With only 3 predictors (food_regime, initial_width and the interaction term), its
unlikely our model will be improved by Penalized Regression. But let's try anyway:
glmnet_mod<- linear_reg(mixture = 1) %>% #mixture specifies alpha parameter
 set_engine("glmnet")

##	#	A tibble: 6 x 3		
##		term	estimate	penalty
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	0.0587	0.004
##	2	initial_volume	0.000328	0.004
##	3	food_regimeLow	-0.000918	0.004
##	4	food_regimeHigh	0	0.004
##	5	initial_volume:food_regimeLow	0	0.004
##	6	<pre>initial_volume:food_regimeHigh</pre>	0.00124	0.004

Results from glmnet

```
ggplot(two_models, aes(x = food_regime)) +
  geom_point(aes(y = .pred, color = model)) +
  labs(y = "urchin size")+theme_bw()
```


Section 3

Preprocessing with recipes

Recipes

The recipes package assists with preprocessing before a model is trained

Recipes

The recipes package assists with preprocessing before a model is trained

- Converts qualitative predictors to dummy variables
- Transforms data to be on a different scale
- Transforms several predictors at the same time
- Extracts features from variable

Recipes

The recipes package assists with preprocessing before a model is trained

- Converts qualitative predictors to dummy variables
- Transforms data to be on a different scale
- Transforms several predictors at the same time
- Extracts features from variable

The main advance of recipes is that it allows us combine several steps at once, in a reproducible fashion

NYCFlights

The flight_data data contains information on over 300,000 flights departning near New York City in 2013. We'll use it to predict whether a plane will arrive more than 30 minutes late.

##	#	A tibble:	: 6 x 10	C						
##		dep_time	flight	origin	dest	air_time	distance	carrier	date	arr_delay
##		<int></int>	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<date></date>	<fct></fct>
##	1	517	1545	EWR	IAH	227	1400	UA	2013-01-01	on_time
##	2	533	1714	LGA	IAH	227	1416	UA	2013-01-01	on_time
##	3	542	1141	JFK	MIA	160	1089	AA	2013-01-01	late
##	4	544	725	JFK	BQN	183	1576	B6	2013-01-01	on_time
##	5	554	461	LGA	ATL	116	762	DL	2013-01-01	on_time
##	6	554	1696	EWR	ORD	150	719	UA	2013-01-01	on_time
##	#	with	1 more	variabl	le: tim	ne_hour <d< th=""><th>ttm></th><th></th><th></th><th></th></d<>	ttm>			

NYCFlights

The flight_data data contains information on over 300,000 flights departning near New York City in 2013. We'll use it to predict whether a plane will arrive more than 30 minutes late.

##	#	A tibble:	6 x 10)						
##		dep_time :	flight	origin	dest	air_time	distance	carrier	date	arr_delay
##		<int></int>	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<date></date>	<fct></fct>
##	1	517	1545	EWR	IAH	227	1400	UA	2013-01-01	on_time
##	2	533	1714	LGA	IAH	227	1416	UA	2013-01-01	on_time
##	3	542	1141	JFK	MIA	160	1089	AA	2013-01-01	late
##	4	544	725	JFK	BQN	183	1576	B6	2013-01-01	on_time
##	5	554	461	LGA	ATL	116	762	DL	2013-01-01	on_time
##	6	554	1696	EWR	ORD	150	719	UA	2013-01-01	on_time
##	#	with	1 more	variab	le: tir	ne_hour <	lttm>			
<pre>flight_data %>% count(arr_delay) %>% mutate(prop = n/sum(n))</pre>										
## ## ##	#	A tibble: arr_delay	2 x 3 I	1 prop						
##	1	late	52540	0.161						
##	2	on time	273279	0.839						

Investigate Predictors

Look at the list of variables: names(flight_data)

[1] "dep_time" "flight" "origin" "dest" "air_time" "distance"
[7] "carrier" "date" "arr_delay" "time_hour"

Investigate Predictors

Look at the list of variables: names(flight_data)

[1] "dep_time" "flight" "origin" "dest" "air_time" "distance"
[7] "carrier" "date" "arr_delay" "time_hour"

• Note that there are two variables flight and time_hour which are not useful as predictors, but are worth keeping for identification purposes.

Investigate Predictors

Additionally, note that dest and carrier are factor variables, so should be converted to a collection of dummy variables

library(skimr)
flight_data %>% skim(dest, carrier)

Table 7: Data summary

Name Number of rows Number of columns	Piped data 325819 10	
Column type frequency: factor	2	
Group variables	None	

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
dest	0	1	FALSE	104	ATL: 16771, ORD: 16507, LAX: 15942, BOS: 14948
carrier	0	1	FALSE	16	UA: 57489, B6: 53715, EV: 50868, DL: 47465

Data Splitting

We can use the rsample package to create a test-training split

Data Splitting

We can use the rsample package to create a test-training split

• The rsample package allows us to create stratified samples in addition to simple random samples

Data Splitting

We can use the rsample package to create a test-training split

• The rsample package allows us to create stratified samples in addition to simple random samples

```
library(rsample)
set.seed(1221)
data_split <- initial_split(flight_data , prop = 3/4)
train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Preprocessing with recipes

Create a recipe and update roles

We now create a recipe for some data pre-processing

```
library(recipes)
flights_rec <-
    recipe(arr_delay ~ ., data = train_data) %>%
    update_role(flight, time_hour, new_role = "ID")
```

Preprocessing with recipes

Create a recipe and update roles

We now create a recipe for some data pre-processing

```
library(recipes)
flights_rec <-
    recipe(arr_delay ~ ., data = train_data) %>%
    update_role(flight, time_hour, new_role = "ID")
```

summary(flights_rec) %>% kable()

variable	type	role	source
dep_time	numeric	predictor	original
flight	numeric	ID	original
origin	nominal	predictor	original
dest	nominal	predictor	original
air_time	numeric	predictor	original
distance	numeric	predictor	original
carrier	nominal	predictor	original
date	date	predictor	original
time_hour	date	ID	original
arr_delay	nominal	outcome	original

Preprocessing with recipes

Add steps to recipes

Will flight date effect chance of late arrival?

Add steps to recipes

Will flight date effect chance of late arrival?

A tibble: 6 x 2 numeric_date ## date ## <date> <dbl> 2013-01-01 15706 ## 1 2 2013-01-02 15707 ## 3 2013-01-03 15708 ## ## 4 2013-01-04 15709 ## 5 2013-01-05 15710 ## 6 2013-01-06 15711

Add steps to recipes

Will flight date effect chance of late arrival?

A tibble: 6 x 2 ## date numeric_date ## <date> <dbl> 1 2013-01-01 15706 ## 2 2013-01-02 15707 ## 3 2013-01-03 ## 15708 4 2013-01-04 15709 ## ## 5 2013-01-05 15710 ## 6 2013-01-06 15711

But its possible that predictors derived from the date will be more beneficial (day of the week, month, holiday)

Add steps to recipes

Will flight date effect chance of late arrival?

##	#	A tibble: 6	5 x 2
##		date	numeric_date
##		<date></date>	<dbl></dbl>
##	1	2013-01-01	15706
##	2	2013-01-02	15707
##	3	2013-01-03	15708
##	4	2013-01-04	15709
##	5	2013-01-05	15710
##	6	2013-01-06	15711

But its possible that predictors derived from the date will be more beneficial (day of the week, month, holiday)

One of the chief benefits of recipes is that they are easy to add to:

```
flights_rec <- flights_rec %>%
  step_date(date, features = c("dow", "month")) %>%
  step_holiday(date, holidays = timeDate::listHolidays("US")) %>%
  step_rm(date)
```

Add steps to recipes

Will flight date effect chance of late arrival?

##	#	A tibble: 6	5 x 2
##		date	numeric_date
##		<date></date>	<dbl></dbl>
##	1	2013-01-01	15706
##	2	2013-01-02	15707
##	3	2013-01-03	15708
##	4	2013-01-04	15709
##	5	2013-01-05	15710
##	6	2013-01-06	15711

But its possible that predictors derived from the date will be more beneficial (day of the week, month, holiday)

One of the chief benefits of recipes is that they are easy to add to:

```
flights_rec <- flights_rec %>%
  step_date(date, features = c("dow", "month")) %>%
  step_holiday(date, holidays = timeDate::listHolidays("US")) %>%
  step_rm(date)
```

• What did each of these verbs do?

Create Dummy Variables

Recall that dest and carrier are factor variables. Additionally, the newly created date_dow and date_month variables are factors as well. To create appropriate dummy variables:

flights_rec <- flights_rec %>% step_dummy(all_nominal(), -all_outcomes())

Create Dummy Variables

Recall that dest and carrier are factor variables. Additionally, the newly created date_dow and date_month variables are factors as well. To create appropriate dummy variables:

flights_rec <- flights_rec %>% step_dummy(all_nominal(), -all_outcomes())

- The first argument all_nominal selects all variables that are either factors or characters
- The second argument -all_outcomes removes any response variables from this step

Create Dummy Variables

Recall that dest and carrier are factor variables. Additionally, the newly created date_dow and date_month variables are factors as well. To create appropriate dummy variables:

flights_rec <- flights_rec %>% step_dummy(all_nominal(), -all_outcomes())

- The first argument all_nominal selects all variables that are either factors or characters
- The second argument -all_outcomes removes any response variables from this step

Finally, to avoid the situation where an infrequently occuring level doesn't exist in the training or test sets:

```
flights_rec <- flights_rec %>% step_zv(all_predictors())
```

Create Dummy Variables

Recall that dest and carrier are factor variables. Additionally, the newly created date_dow and date_month variables are factors as well. To create appropriate dummy variables:

flights_rec <- flights_rec %>% step_dummy(all_nominal(), -all_outcomes())

- The first argument all_nominal selects all variables that are either factors or characters
- The second argument -all_outcomes removes any response variables from this step

Finally, to avoid the situation where an infrequently occuring level doesn't exist in the training or test sets:

```
flights_rec <- flights_rec %>% step_zv(all_predictors())
```

The step_zv verb removes columns from the training data which have a single value