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Outline

In today's class, we will. ..
® |nvestigate pruning algorithms for improving accuracy of regression trees

® Discuss classifcation trees for classification problems.
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Improving Regression Trees
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Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintined by K.
McConville, I. Caldwell, and N. Horton)
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Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintined by K.
McConville, I. Caldwell, and N. Horton)

## Rows: 1,000
## Columns: 10

## $ Species <fct> PSME, CAJA, QUMU, CADE, PSME, CPSP, PRAV, PSME...
## $ Condition <fct> Fair, Fair, Fair, Fair, Fair, Fair, Poor, Fair...
## $ Tree_Height <int> 102, 23, 18, 78, 123, 85, 11, 145, 16, 72, 88,...
## $ Crown_Width_NS <int> 52, 36, 6, 17, 52, 36, 9, 36, 10, 86, 25, 12, ...
## $ Crown_Width_EW <int> 43, 40, 6, 18, 38, 52, 11, 35, 10, 86, 10, 16,...
## $ Crown_Base_Height <int> 63, 5, 5, 6, 13, 5, 6, 9, 5, 8, 6, 4, 4, 3, 2,...
## $ Structural_Value <dbl> 6694.04, 2444.75, 71.28, 4162.43, 6159.02, 113...
## $ Carbon_Storage_lb <dbl> 1992.9, 917.5, 5.3, 1428.7, 1901.4, 11071.6, 2...
## $ Stormwater_ft <dbl> 78.9, 43.9, 1.0, 19.8, 117.6, 52.0, 4.1, 80.1,...
## $ Pollution_Removal_oz <dbl> 21.2, 11.8, 0.3, 5.3, 31.6, 14.0, 1.1, 21.5, 1...
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Pollution Removal
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Regression Tree
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Another Visualization
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Tree Accuracy

Let's check MSE on a test set:

n
1 2
MSE = — i — Vi
=Y -9
i=1
## Tree_MSE
## 1 169.0145
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Let's check MSE on a test set:

n
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i=1
## Tree MSE
## 1 169.0145
And compared to the linear model:

#i# 1m_MSE
## 1 412.3758

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020 8/22



Improving Regression Trees
00000e0000000000

Tree Accuracy

Let's check MSE on a test set:
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## Tree_MSE
## 1 169.0145

And compared to the linear model:

#i# 1m_MSE
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Why did the tree model outperform the linear model?
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Tree Accuracy

Let's check MSE on a test set:

n
1 2
MSE = — i — Vi
=Y -9
i=1
## Tree_MSE
## 1 169.0145

And compared to the linear model:

#i# 1m_MSE
## 1 412.3758

Why did the tree model outperform the linear model?

Nevertheless, what are some downsides to the tree model?
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE=Y (-7l + > (vi—7)

i€Sy IS
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE = (i -7+ > (v — %)
i€Sy IS

@® Repeat step one on both S; and Ss.
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE = (i -7+ > (v — %)
i€Sy IS
@® Repeat step one on both S; and Ss.

©® Repeat on the new regions.
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE=Y (i—n)+> (vi—»)
i€Sy IS
@® Repeat step one on both S; and Ss.
©® Repeat on the new regions.
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE=Y (i—n)+> (vi—»)
i€s i€5,
@® Repeat step one on both S; and Ss.
©® Repeat on the new regions.
0 ...
@ Stop?
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE=Y (i—n)+> (vi—»)
i€s i€5,
@® Repeat step one on both S; and Ss.
©® Repeat on the new regions.
0 ...
@ Stop?

How do we decide when to abort algorithm?
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The general tree algorithm

@ Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S, that minimizes sum of squred error:

SSE=Y (-7l + > (vi—7)
i€s i€5,
@® Repeat step one on both S; and Ss.
©® Repeat on the new regions.
0 ...
@ Stop?
How do we decide when to abort algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?
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Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
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Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

® Compare test and training RSS between full tree and a subtree.
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Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

® Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve test RSS by
exhaustively searching all subtrees for the best performing model.
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Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

® Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve test RSS by
exhaustively searching all subtrees for the best performing model.

® But this search is actually even more computationally expensive than best subset!

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020 10/22



Improving Regression Trees
0000000 e00000000

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

® Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve test RSS by
exhaustively searching all subtrees for the best performing model.

® But this search is actually even more computationally expensive than best subset!

® So we instead restrict our attention to those subtrees most likely to improve RSS
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning

® The goal is to find a tree of optimal size with the smallest error rate.

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020 11/22



Improving Regression Trees
0000000 0e0000000

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.

® We consider a sequence of trees indexed by a tuning parameter a.
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.

® As « increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.

® As « increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.

® We can find the optimal value of a using cross-validation
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.

® As « increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.

® We can find the optimal value of a using cross-validation

There are two ways to select the best subtree.
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Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.

® As « increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.

® We can find the optimal value of a using cross-validation
There are two ways to select the best subtree.

® Choose the tree with smallest MSE.

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020



Improving Regression Trees
0000000 0e0000000

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
® The goal is to find a tree of optimal size with the smallest error rate.
® We consider a sequence of trees indexed by a tuning parameter a.

For each value of «, there exists a unique subtree T of the full tree Ty that minimizes

RSS + | T|
where |T| is the number of terminal nodes of the tree T.

® That is, a penalizes a tree based on its number of terminal nodes.

® As « increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.

® We can find the optimal value of a using cross-validation
There are two ways to select the best subtree.
® Choose the tree with smallest MSE.

® Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020 11/22



Improving Regression Trees
000000000 e000000

Pruning Example

How does MSE vary as tree size changes?

71000 11000 5300 3300 2500 =Inf
g i il | | | | !
g 2 |
8
> o
s 3 o
8 \o o o o
— T T T T T T T T
1 2 3 4 5 6 7 8
size

What are the test MSEs for the full tree and the subtree with 5 terminal nodes?

## Full_Tree_MSE
## 1 169.0145

## small_Tree_MSE
#i#t 1 152.5175
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Comparison
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Comparison 2

o o
S - S
— —
o _| o |
= © = ®©
S S
2 o ] 18.80 2 o | 18.80
I © T ©
p 4.062.00 p 4.062.90
s % : oS-
@] O
R ] 35,70
4:109.,°36.60 RASIEB060 .
o - o - 57.00
T T T T T T T
0 50 100 150 0 50 100 150
Tree Height Tree Height

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 4th, 2020 14 /22



Improving Regression Trees
000000000000 e000

Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.
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Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.

® The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But its plots are ugly. ISLR uses tree.
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Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.

® The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But its plots are ugly. ISLR uses tree.

® The rpart package is newer, computationally faster, and has more options. It also
can be combined with the partykit and ggparty packages for much nicer plots.
Applied Predictive Modeling uses rpart along with caret for cv.
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Trees using tree

To fit a tree:

library(tree)
tree_model<-tree(Pollution_Removal_oz ~ ., data = small_pdxTrees)
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Trees using tree

To fit a tree:

library(tree)
tree_model<-tree(Pollution_Removal_oz ~ ., data = small_pdxTrees)

To view:
plot (tree_model)
text (tree_model, pretty = 0, cex = .5)

Tree_Height < 53.5
I

Tree_Height < 31.5 Crown_Base |Height < 18.5
Tree_Height < 85.5 Tree_Helghl 9 pase Height <37.5
4.05 12.39 =

11.29

27.46 18.00
24.60 37.59
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Trees in R via tree cont'd

To perform cost-complexity pruning:

tree_model_cv<-cv.tree(tree_model)
plot(tree_model_cv)

95000 14000 7800 3100 =Inf
| | | | |

260000

deviance
200000

140000
| |
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Trees in R via tree cont'd

And to get a pruned tree:

pruned_tree<-prune.tree(tree_model, best = 4)
plot (pruned_tree)
text (pruned_tree, pretty = 0, cex = .5)

Tree_Height < 53.5
1

Crown_Base |Height < 18.5

7.751 Tree_Hei+h[ <855

| | 20.580

24.600 37.590
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Section 2

Classification Trees
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Trees for Classification Problems

Can we predict the winner of a presidential election based on demographics, state polling,
economic conditions, and other features?
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Trees for Classification Problem

Can we predict the winner of a presidential election based on demographics, state polling,
economic conditions, and other features?
® No. Too stressful.
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Trees for Classification Problems

Can we predict the species of a Portand tree based on its crown height and overall height?
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Trees for Classification Problems

Can we predict the species of a Portand tree based on its crown height and overall height?

® YES!
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
RSS (why?)
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
RSS (why?)

Some options for decision metric:
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
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Some options for decision metric:

® (lassification error rate (i.e. prop. obs. in region not in most common class)
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
RSS (why?)

Some options for decision metric:

® (lassification error rate (i.e. prop. obs. in region not in most common class)

® But because of the greedy algorithm used to split trees, CER tends to overfit to noise
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
RSS (why?)

Some options for decision metric:

® (lassification error rate (i.e. prop. obs. in region not in most common class)
® But because of the greedy algorithm used to split trees, CER tends to overfit to noise

® The Gini index as a measure of total variance across all K classes:

K
G = Z Pmk(1 — Pmk)  where Pmk = prop. obs. in region m in class k
i=1

Nate Wells (Math 2:
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Classifcation Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® But to grow a classification tree, we need to make cuts based on a metric other than
RSS (why?)

Some options for decision metric:

® (lassification error rate (i.e. prop. obs. in region not in most common class)
® But because of the greedy algorithm used to split trees, CER tends to overfit to noise

® The Gini index as a measure of total variance across all K classes:

K
G = Z Pmk(1 — Pmk)  where Pmk = prop. obs. in region m in class k
i=1

® The Gini index is small if all p,, are close to 0 or 1.
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