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In today’s class, we will. ..

® Discuss classifcation trees for classification problems.
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Classification Trees
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.

® The most natural choice is to use Classification error rate E (i.e. proportion of obs. in
region not in most common class)

E =1— max«(pmk) where pmx = prop. obs. in region m in class k
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.

® The most natural choice is to use Classification error rate E (i.e. proportion of obs. in
region not in most common class)

E =1— max«(pmk) where pmx = prop. obs. in region m in class k

® But because of the greedy algorithm used to split trees, CER tends to overfit to noise
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Other Decision Metric

Two common alternatives for decision metric:

Nate Wells (Math 243: Stat Learning) Regression and Classifi November 6th,



Classification Trees
00@00000000

Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The cross-class entropy D:

K
D=— Z Pmk In Pk where Pmk = prop. obs. in region m in class k
i=1
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The cross-class entropy D:

K
D=— Z Pmk In Pk where Pmk = prop. obs. in region m in class k
i=1

® [t measures the average amount of information conveyed by knowing the region of an
observation.
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The cross-class entropy D:

K
D=— Z Pmk In Pk where Pmk = prop. obs. in region m in class k
i=1

® [t measures the average amount of information conveyed by knowing the region of an
observation.

® The entropy is small if all p,, are close to 0 or 1.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitatitve or binary
categorical varaibles.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitatitve or binary
categorical varaibles.

® But with some modification, trees can also be used with multi-level categorical
variables.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitatitve or binary
categorical varaibles.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitatitve or binary
categorical varaibles.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitatitve or binary
categorical varaibles.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.

® Since trees are already prone to high variance, this additional bias can lead to unwanted
increases in MSE.
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Trees for Classification Problems

Can we predict the winner of a presidential election based on demographics, state polling,
economic conditions, and other features?
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Trees for Classification Problem

Can we predict the winner of a presidential election based on demographics, state polling,
economic conditions, and other features?

® No. Too stressful.
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Eyes on Arizona, Georgia
and 2 ‘Blue Wall’ States

- President Trump's campaign already sald it
Would request a recount in Wisconsin, where.
Joe Biden had a lead of about 20,000 votes.
M Biden holds narrow leads in Michigan,
Nevada and Arizona, while President Trump.
leads in Georgia and North Carolina,

mocrats’ path to Senate control narrowed

as Susan Collins declared victory. Democrats

are expected to hold onto the House. Here's
the latest.
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Trees for Classification Problems

Can we predict the species of a Portand tree based on its crown height and overall height?
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Trees for Classification Problems

Can we predict the species of a Portand tree based on its crown height and overall height?
® YES!
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Implementing classfication trees in R

As with regression trees, we use the tree package. We restrict our attention to the 3 most
common tree species.

library(tree)
tree_model<-tree(Common_Name ~ ., data = common_trees)
plot(tree_model)

text (tree_model, pretty = 0, cex = .5)
Tree_Height <83.5
I
Crown_Base| Height < 3.5 Crown_Base| Height < 6.5
[ —
Crown_Base |Height < 15.5 Douglas~Fir Douglas-Fir

Tree_Hei§ht < 67.5
Western Redcedar Crown_Base, i

Douglas—Fir

Norway Maple  Norway Maple Douglas—Fir
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Summary

We can also gather information on the model using the summary () function:

##
## Classification tree:
## tree(formula = Common_Name ~ ., data = common_trees)

## Number of terminal nodes: 7
## Residual mean deviance: 0.6324 = 5844 / 9242
## Misclassification error rate: 0.1153 = 1066 / 9249

Nate Wells (Math 243: Stat Learning) Regression and Classification Trees November 6th, 2020 10/13



Classification Trees
00000008000

Summary

We can also gather information on the model using the summary () function:

##
## Classification tree:
## tree(formula = Common_Name ~ ., data = common_trees)

## Number of terminal nodes: 7
## Residual mean deviance: 0.6324 = 5844 / 9242
## Misclassification error rate: 0.1153 = 1066 / 9249

® Here, the deviance reported is given by

-2 E E N IN Pk where nmy is number of obs. in region m in class k
m k

® Residual mean deviance is deviance divided by n — |To|.

® A small deviance indicates a good fit to training data
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Pruning Classification Trees

We use cv.tree to prune (just like for regression trees).

Nate Wells (Math 243: Stat Learning)

Regression and Classification Trees

November 6th, 2020 11/13



Classification Trees
00000000800

Pruning Classification Trees

We use cv.tree to prune (just like for regression trees).

® While we use the Gini index or the entropy to grow the tree, it is still desirable to use
misclassification rate to prune the tree
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Pruning Classification Trees

We use cv.tree to prune (just like for regression trees).

® While we use the Gini index or the entropy to grow the tree, it is still desirable to use
misclassification rate to prune the tree

set.seed (1)
cv_tree_model<-cv.tree(tree_model, FUN = prune.misclass)
plot(cv_tree_model)
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Pruning Trees, cont'd

We use the prune.misclass function to prune the trees to the desired number of nodes:
pruned_tree_model<-prune.misclass(tree_model, best = 4)

plot (pruned_tree_model)

text (pruned_tree_model, pretty = 0, cex = .5)

Tree_Height < 83.5
T

Crown_Base| Height < 3.5

Douglas-Fir

Crown_Base |Height < 15.5

Western Redcedar

Norway Maple Douglas—Fir
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Misclassification

How well does the tree do on test data?

tree_preds<-predict(tree_model, common_trees_tst, type = "class" )
conf_mat<-table(tree_preds, common_trees_tst$Common_Name)

conf_mat

##

## tree_preds Douglas-Fir Norway Maple Western Redcedar
##  Douglas-Fir 4709 124 137
##  Norway Maple 174 936 146
#it Western Redcedar 190 56 465

(sum(conf_mat) - sum(diag(conf_mat)))/sum(conf_mat)

## [1] 0.1192158
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