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Outline

In today's class, we will. ..
® Discuss bagging and random forests as methods for reducing variance in decision trees

® |nvestigate boosting as an **learning® method for improving decision trees
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Election Prediction

The 538 blog tracked presidential polls over the course of 2020. How did they come up
with a final prediction that Biden would win the popular vote 51.8% to 43.4%7?

FiveThirtyEight

Who's ahead in the national polls?

An updating average of 2020 presidential general election polls, accounting for each poll's quality, sample size and recency

NOV.3LEADER
Biden

G 1)

e s
_\M\—’W\__/—f Trump 43.4%

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 6th, 2020



Bagging and Random Forests
00@0000000000000

semble Methods

Suppose we have m different models to predict Y based on Xi, ..., X,. Suppose Y; is the
prediction made by the ith model.
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Ensemble Methods

Suppose we have m different models to predict Y based on Xi, ..., X,. Suppose Y; is the
prediction made by the ith model.

A simple ensemble model makes a prediction Y as the weighted average of the predictions
from each model:

Y:Wl\A’l—i—---—&—Wm\A/m where wi +...w, =1
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prediction made by the ith model.

A simple ensemble model makes a prediction Y as the weighted average of the predictions
from each model:
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Advantages of ensemble models?
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Suppose we have m different models to predict Y based on Xi, ..., X,. Suppose Y; is the
prediction made by the ith model.

A simple ensemble model makes a prediction Y as the weighted average of the predictions
from each model:

\A/:W1\A’1+---+Wm§/m where wi +...w, =1
Advantages of ensemble models?
® Significantly more flexible than a single model
® More efficient than single model

® More resilient against model-building bias
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prediction made by the ith model.

A simple ensemble model makes a prediction Y as the weighted average of the predictions
from each model:

\A/:W1\A’1+---+Wm§/m where wi +...w, =1
Advantages of ensemble models?
® Significantly more flexible than a single model
® More efficient than single model
® More resilient against model-building bias
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Ensemble Methods

Suppose we have m different models to predict Y based on Xi, ..., X,. Suppose Y; is the
prediction made by the ith model.

A simple ensemble model makes a prediction Y as the weighted average of the predictions
from each model:

\A/:W1\A’1+---+Wm§/m where wi +...w, =1

Advantages of ensemble models?

® Significantly more flexible than a single model

® More efficient than single model

® More resilient against model-building bias
Disadvantages?

® Making predictions is more computationally expensive

® Favors models with low test time

® Diminishing returns on the number models that can be incorporated in ensemble
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?
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Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.
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Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.

Why?

® Recall that decision trees tend to have high variance. But averaging the results of
independent (or weakly dependent) variables decreases variance

® Think about the Central Limit Theorem
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.

Why?

® Recall that decision trees tend to have high variance. But averaging the results of
independent (or weakly dependent) variables decreases variance

® Think about the Central Limit Theorem

® Unlike a single tree model, we do not prune (we instead control variance by averaging)
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Test Error for Bagged Models

Recall from a previous homework that an individual observation has probability
1 — e ! & 0.632 of appearing in a bootstrap sample.
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Recall from a previous homework that an individual observation has probability
1 — e ! & 0.632 of appearing in a bootstrap sample.

® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)
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Test Error for Bagged Models

Recall from a previous homework that an individual observation has probability
1 — e ! & 0.632 of appearing in a bootstrap sample.
® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)
® The out-of-bag observations can be used as a natural validation set for the bootstrap

model.
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Test Error for Bagged Models

Recall from a previous homework that an individual observation has probability
1 — e ! & 0.632 of appearing in a bootstrap sample.

® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)

® The out-of-bag observations can be used as a natural validation set for the bootstrap
model.

® We get an overall estimate of test MSE for the bagged model by averaging the MSE
of each bootstrap model on its out-of-bag observations
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Bagged pdXTrees

set.seed (1)

library(pdxTrees)

all_trees <- get_pdxTrees_parks()

my_trees <- all_trees 7>}, select(Pollution_Removal_oz,
Tree_Height,
Crown_Base_Height,
Condition) %>%

sample_n(1000)

set.seed (1)
library(tree)
my_models<-1list ()

for (i in 1:4){
bootstrap<-sample_n(my_trees, size = nrow(my_trees), replace = T)
my_models[[i]]<-tree(Pollution_Removal_oz ~., data = bootstrap)

}
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A few trees
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Performance

my_predictions<-list()
for (i in 1:4){
my_predictions[[i]]<- predict(my_models[[i]], test_trees )

MSE<-c()
for (i in 1:4){
MSE[i]<-mean((my_predictions[[i]] - test_trees$Pollution_Removal_oz) 2, na.rm = T)

}

data.frame(model = 1:4, MSE)

## model MSE
## 1 1 106.8568
##t 2 2 112.4455
## 3 3 126.5883
##t 4 4 121.8193
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Bagged Performance

bagged_prediction<-data.frame(modell = my_predictions[[1]],
model2 = my_predictions[[2]],
model3 = my_predictions[[3]],
model4 = my_predictions[[41]) %>%
mutate(bagged = (modell + model2 + model3 + model4)/4)

head(bagged_prediction)

## modell  model2 model3 model4 bagged
## 1 12.403597 16.22254 10.661326 10.321645 12.402276
## 2 42.193827 52.59375 31.763025 40.052174 41.650694
## 3 4.233571 5.88597 3.392694 2.513298 4.006383
## 4 14.612389 19.23693 9.736957 9.134286 13.180141
## 5 28.886577 27.18400 31.763025 24.553114 28.096679
## 6 20.375000 19.23693 19.546667 22.385714 20.386078

bagged_MSE<-mean((bagged_prediction$bagged - test_trees$Pollution_Removal_oz) 2, na.
data.frame(bagged_MSE)

##  bagged _MSE
## 1 104.0186
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The more trees the merrier?

If 4 trees improved performance over 1, what if we bagged 10 trees? 1007
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.
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Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)
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Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

® To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

® To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

® Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees
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Random Forests

To create a random forest:

® Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

©® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

O Aggregate the models to create an ensemble model.

Nate Wells (Math 243: Stat Learning)

Bagging and Boosting November 6th, 2020 14 /18



Bagging and Random Forests
00000000000 e0000

Random Forests

To create a random forest:

® Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

©® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

O Aggregate the models to create an ensemble model.

Advantages of the random forest?
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Random Forests

To create a random forest:

® Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

©® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

O Aggregate the models to create an ensemble model.
Advantages of the random forest?
® |ndividual models are less correlated, so ensemble has lower variance

® Each tree is quicker to build (why?)
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Random Forests

To create a random forest:

® Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

©® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

O Aggregate the models to create an ensemble model.

Advantages of the random forest?
® |ndividual models are less correlated, so ensemble has lower variance
® Each tree is quicker to build (why?)

Disadvantages?
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Random Forests

To create a random forest:

® Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

©® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

O Aggregate the models to create an ensemble model.
Advantages of the random forest?
® |ndividual models are less correlated, so ensemble has lower variance
® Each tree is quicker to build (why?)
Disadvantages?
® Difficult to interpret
® Theoretically properties less well-studied
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Hand-drawn Example
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Random Forests in R

To create both bagged trees and random forests, we use the randomForest function in the
randomForest package in R:

set.seed (1)
library(randomForest)

rfmodel <- randomForest(Pollution_Removal oz ~ ., data = my_trees_na)
rfmodel

#it

## Call:

## randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na)
#i# Type of random forest: regression

#t Number of trees: 500

## No. of variables tried at each split: 1

##

## Mean of squared residuals: 153.6827

## % Var explained: 44.36
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Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=
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Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

® By default, randomForest uses p/3 predictors for regression and ,/p predictors for
classification
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Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

® By default, randomForest uses p/3 predictors for regression and ,/p predictors for
classification

set.seed (1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,
ntrees = 10, mtry = 3)

rfmodel?2

##

## Call:

## randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees
#i# Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 3

##

## Mean of squared residuals: 170.2656

#i#t % Var explained: 38.36
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Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

® By default, randomForest uses p/3 predictors for regression and ,/p predictors for
classification

set.seed (1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,
ntrees = 10, mtry = 3)

rfmodel?2

##

## Call:

## randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees
#i# Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 3

##

## Mean of squared residuals: 170.2656

#i#t % Var explained: 38.36

How can we create a bagged model using the randomForest function?
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Modifications

We can control how many trees are generated with ntrees = and the number of
predictors at each split with mtry=

® By default, randomForest uses p/3 predictors for regression and ,/p predictors for
classification

set.seed (1)
rfmodel2 <- randomForest(Pollution_Removal_oz ~ ., data = my_trees_na,
ntrees = 10, mtry = 3)

rfmodel?2

##

## Call:

## randomForest(formula = Pollution_Removal_oz ~ ., data = my_trees_na, ntrees
#i# Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 3

##

## Mean of squared residuals: 170.2656

#i#t % Var explained: 38.36

How can we create a bagged model using the randomForest function?

® Set mtry= p, where p is the total number predictors available
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Making predictions

So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, test_trees)

data.frame(my_preds,actual = test_trees$Pollution_Removal_oz) %>/, head()

## my_preds actual

## 1 14.089043 16.6
## 2 31.478264 14.7
## 3 6.004437 0.2
## 4 19.351968 15.0
## 5 28.102784 41.4
## 6 20.041636 10.5

Nate Wells (Math 243: Stat Learning) Bagging and Boosting November 6th, 2020 18/18



	Bagging and Random Forests

