Tidymodels

Nate Wells

Math 243: Stat Learning

December 2nd, 2020

Outline

In today's class, we will...

• Discuss the tidymodels packages for model building in the tidyverse framework

Section 1

Intro to tidymodels

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm	MASS stats gbm	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees)</pre>
tree M5P knn	treet RWeka class	<pre>predict(object, type = "prob") predict(object, type = "probability")</pre>

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm	MASS stats gbm	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees)</pre>
tree M5P knn	treet RWeka class	<pre>predict(object, type = "prob") predict(object, type = "probability")</pre>

Each method has significantly different methods for making class probability predictions

Why tidymodels?

Suppose we plan to classify data with a binary response variable. Several models are available:

Function	Package	Code
lda glm gbm tree M5P knn	MASS stats gbm treet RWeka class	<pre>predict(object) predict(object, type = "response") predict(object, type = "response", n.trees) predict(object, type = "prob") predict(object, type = "probability")</pre>

Each method has significantly different methods for making class probability predictions Additionally, each model takes in different types of data arguments (vectors, model matrices, data frames, model formulas)

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges.

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges. Additionally, tidymodels fits in the broader tidyverse framework:

- Packages and functions should be accessible and easily interpreted
- Outputs should be data frames (or tibbles) whenever possible
- Functions should be compatible with the %>% operator and functional programming
- Model objects should be compatible with ggplot2

tidymodels goals

Broadly, tidymodels presents collection of modeling packages that share design philosophy, syntax and data structure to make it easy to move between pacakges. Additionally, tidymodels fits in the broader tidyverse framework:

- Packages and functions should be accessible and easily interpreted
- Outputs should be data frames (or tibbles) whenever possible
- Functions should be compatible with the %>% operator and functional programming
- Model objects should be compatible with ggplot2

tidymodels takes the mechanics from each individual model package (mass, tree, glm etc.) and unifies the input and output

The tidymodel framework

- Preprocess data using the recipes package
- Oreate training-test data splits using the rsample package
- 6 Give a model a functional form and specify fitting method using the parsnip package
- Ø Fit the model, tidy the results, and make predictions using the fit, tidy, and predict functions
- 6 Estimate model performance using cross-validation from the rsample package
- **6** Tune model parameters by adding model specifications

The tidymodel framework

- Preprocess data using the recipes package
- Oreate training-test data splits using the rsample package
- 6 Give a model a functional form and specify fitting method using the parsnip package
- Ø Fit the model, tidy the results, and make predictions using the fit, tidy, and predict functions
- 6 Estimate model performance using cross-validation from the rsample package
- 6 Tune model parameters by adding model specifications

We'll investigate each of these in-depth (although slightly out of order)

Section 2

Build a Model

Nate Wells (Math 243: Stat Learning)

The Data

The sea_urchins data set explores the relationship between feeding regimes and size of sea urchins over time:

```
sea_urchins<-read_csv("https://tidymodels.org/start/models/urchins.csv") %>%
setNames(c("food_regime", "initial_volume", "width")) %>%
mutate(food_regime = factor(food_regime, levels = c("Initial", "Low", "High")))
head(sea_urchins)
```

##	#	A tibble: 6	х З	
##		food_regime	initial_volume	width
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>
##	1	Initial	3.5	0.01
##	2	Initial	5	0.02
##	3	Initial	8	0.061
##	4	Initial	10	0.051
##	5	Initial	13	0.041
##	6	Initial	13	0.061

Scatterplot

Scatterplot

Goal: Predict width as a function of food_regime and initial_volume.

• Does an additive model seem appropriate?

Scatterplot

Goal: Predict width as a function of food_regime and initial_volume.

- Does an additive model seem appropriate?
- One option might be a linear model with interaction terms.

Nate Wells (Math 243: Stat Learning)

Build it!

Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

• Other engines are possible for linear_reg(): glmnet, stan, and more

Build it!

```
Our model formula takes the form width ~ initial_volume + food_regime + initial_volume:food_regime (or width ~ initial_volume*food_regime)
```

We need to specify the model's functional form. Then specify the method for fitting using $set_engine()$

```
library(parsnip)
linear_reg() %>%
set_engine("lm")
```

```
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
```

• Other engines are possible for linear_reg(): glmnet, stan, and more

Now we create the model based on data using the fit function:

```
lm_mod<-linear_reg() %>%
set_engine("lm")
lm_fit<- lm_mod %>%
fit(width ~ initial_volume*food_regime, data = sea_urchins)
```

Results

The output of our lm_fit object:

lm_fit

```
## parsnip model object
##
## Fit time:
              4ms
##
## Call:
## stats::lm(formula = width ~ initial_volume * food_regime, data = data)
##
## Coefficients:
                       (Intercept)
                                                     initial volume
##
                         0.0331216
##
                                                          0.0015546
                                                    food_regimeHigh
##
                    food regimeLow
                         0.0197824
##
                                                          0.0214111
##
    initial volume:food regimeLow
                                    initial volume:food regimeHigh
##
                        -0.0012594
                                                          0.0005254
```

Summary Table

To get the traditional summary table:

```
tidy(lm_fit) %>% kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.0331216	0.0096186	3.4434873	0.0010020
initial_volume	0.0015546	0.0003978	3.9077643	0.0002220
food_regimeLow	0.0197824	0.0129883	1.5230864	0.1325145
food_regimeHigh	0.0214111	0.0145318	1.4733993	0.1453970
initial_volume:food_regimeLow	-0.0012594	0.0005102	-2.4685525	0.0161638
initial_volume:food_regimeHigh	0.0005254	0.0007020	0.7484702	0.4568356

Summary Table

To get the traditional summary table:

```
tidy(lm_fit) %>% kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.0331216	0.0096186	3.4434873	0.0010020
initial_volume	0.0015546	0.0003978	3.9077643	0.0002220
food_regimeLow	0.0197824	0.0129883	1.5230864	0.1325145
food_regimeHigh	0.0214111	0.0145318	1.4733993	0.1453970
initial_volume:food_regimeLow	-0.0012594	0.0005102	-2.4685525	0.0161638
initial_volume:food_regimeHigh	0.0005254	0.0007020	0.7484702	0.4568356

Note that the output is a data frame with standard column names

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

• First, we generate data:

New Data

Suppose we wish to predict the width of 6 sea urchins with initial_volume 5 and 30 ml, and with each different food_regime.

initial_volume	food_regime
5	Initial
30	Initial
5	Low
30	Low
5	High
30	High

Make predictions

Then we make predictions

```
new_preds <- predict(lm_fit, new_data = new_urchins)
conf_int_preds<pre>redict(lm_fit, new_data = new_urchins, type = "conf_int")
new_preds %/% kable()
```

.pred
0.0408948
0.0797608
0.0543803
0.0617621
0.0649329
0.1169338

conf_int_preds %>% kable()

.pred_lower	.pred_upper
0.0251382	0.0566514
0.0688612	0.0906605
0.0396403	0.0691204
0.0522641	0.0712601
0.0483265	0.0815393
0.0999144	0.1339532

Combining Data and Predictions

Because the result of predict() is tidy, we can easily combine it with the original data: combined_data <- new_urchins %>% cbind(new_preds) %>% cbind(conf_int_preds) combined_data %>% kable()

initial_volume	food_regime	.pred	.pred_lower	.pred_upper
5	Initial	0.0408948	0.0251382	0.0566514
30	Initial	0.0797608	0.0688612	0.0906605
5	Low	0.0543803	0.0396403	0.0691204
30	Low	0.0617621	0.0522641	0.0712601
5	High	0.0649329	0.0483265	0.0815393
30	High	0.1169338	0.0999144	0.1339532

Predictions Plot

```
ggplot(combined_data, aes(x = food_regime)) +
geom_point(aes(y = .pred)) +
geom_errorbar(aes(ymin = .pred_lower, ymax = .pred_upper),width = .2) +
labs(y = "urchin size")+theme_bw()
```


Using a different engine

With only 3 predictors (food_regime, initial_width and the interaction term), its
unlikely our model will be improved by Penalized Regression. But let's try anyway:
glmnet_mod<- linear_reg(mixture = 1) %>% #mixture specifies alpha parameter
 set_engine("glmnet")

Using a different engine

With only 3 predictors (food_regime, initial_width and the interaction term), its
unlikely our model will be improved by Penalized Regression. But let's try anyway:
glmnet_mod<- linear_reg(mixture = 1) %>% #mixture specifies alpha parameter
 set_engine("glmnet")

##	#	A tibble: 6 x 3		
##		term	estimate	penalty
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	0.0587	0.004
##	2	initial_volume	0.000328	0.004
##	3	food_regimeLow	-0.000918	0.004
##	4	food_regimeHigh	0	0.004
##	5	initial_volume:food_regimeLow	0	0.004
##	6	<pre>initial_volume:food_regimeHigh</pre>	0.00124	0.004

Results from glmnet

```
ggplot(two_models, aes(x = food_regime)) +
  geom_point(aes(y = .pred, color = model)) +
  labs(y = "urchin size")+theme_bw()
```


Section 3

Preprocessing with recipes

Recipes

The recipes package assists with preprocessing before a model is trained

Recipes

The recipes package assists with preprocessing before a model is trained

- Converts qualitative predictors to dummy variables
- Transforms data to be on a different scale
- Transforms several predictors at the same time
- Extracts features from variable

Recipes

The recipes package assists with preprocessing before a model is trained

- Converts qualitative predictors to dummy variables
- Transforms data to be on a different scale
- Transforms several predictors at the same time
- Extracts features from variable

The main advance of recipes is that it allows us combine several steps at once, in a reproducible fashion

House Prices

The house data contains information on 30 predictors for 200 houses in Ames, Iowa

glimpse(house)

Rows: 200

##	Co	olumns: 31		
##	\$	SalePrice	<int></int>	181500, 223500, 200000, 149000, 154000, 134800, 30600 \dots
##	\$	Id	<int></int>	2, 3, 8, 17, 25, 27, 28, 43, 51, 54, 58, 69, 72, 79,
##	\$	Functional	<fct></fct>	Тур, Тур, Тур, Тур, Тур, Тур, Тур, Тур,
##	\$	BldgType	<fct></fct>	1Fam, 1Fam, 1Fam, 1Fam, 1Fam, 1Fam, 1Fam, 1Fam, 1Fam,
##	\$	Foundation	<fct></fct>	CBlock, PConc, CBlock, CBlock, CBlock, CBlock, PConc,
##	\$	LotShape	<fct></fct>	Reg, IR1, IR1, IR1, IR1, Reg, Reg, IR1, IR2, IR1, IR1
##	\$	LandSlope	<fct></fct>	Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl, Gtl,
##	\$	SaleCondition	<fct></fct>	Normal, Normal, Normal, Normal, Normal, Normal
##	\$	RoofMatl	<fct></fct>	CompShg, CompShg, CompShg, CompShg, CompShg, CompShg,
##	\$	ScreenPorch	<int></int>	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
##	\$	MSSubClass	<int></int>	20, 60, 60, 20, 20, 20, 20, 85, 60, 20, 60, 30, 20, 9
##	\$	GarageCars	<int></int>	2, 2, 2, 2, 1, 2, 3, 2, 2, 3, 2, 1, 2, 0, 0, 2, 0, 2,
##	\$	BedroomAbvGr	<int></int>	3, 3, 3, 2, 3, 3, 3, 2, 3, 0, 3, 2, 2, 4, 3, 2, 3, 2,
##	\$	TotalBsmtSF	<int></int>	1262, 920, 1107, 1004, 1060, 900, 1704, 840, 794, 184
##	\$	LotArea	<int></int>	9600, 11250, 10382, 11241, 8246, 7200, 11478, 9180, 1
##	\$	OpenPorchSF	<int></int>	0, 42, 204, 0, 90, 32, 50, 0, 75, 72, 70, 0, 0, 0, 0,
##	\$	BsmtFullBath	<int></int>	0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0,
##	\$	WoodDeckSF	<int></int>	298, 0, 235, 0, 406, 222, 0, 240, 0, 857, 0, 0, 0, 0,
##	\$	OverallCond	<int></int>	8, 5, 6, 7, 8, 7, 5, 7, 6, 5, 5, 6, 6, 5, 5, 3, 5, 5,
##	\$	YrSold	<int></int>	2007, 2008, 2009, 2010, 2010, 2010, 2010, 2007, 2007,
##	\$	GrLivArea	<int></int>	1262, 1786, 2090, 1004, 1060, 900, 1704, 884, 1470, 1
##	\$	MoSold	<int></int>	5, 9, 11, 3, 5, 5, 5, 12, 7, 11, 8, 6, 6, 4, 8, 12, 1
##	\$	TotRmsAbvGrd	<int></int>	6, 6, 7, 5, 6, 5, 7, 5, 6, 5, 7, 4, 4, 8, 5, 6, 6, 5,
##	\$	PoolArea	<int></int>	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
##	\$	YearBuilt	<int></int>	1976, 2001, 1973, 1970, 1968, 1951, 2007, 1983, 1997,
##	\$	GarageArea	<int></int>	460, 608, 484, 480, 270, 576, 772, 504, 388, 894, 565
##	\$	OverallQual	<int></int>	6, 7, 7, 6, 5, 5, 8, 5, 6, 9, 7, 4, 4, 4, 4, 5, 4, 5,
##	\$	Fireplaces	<int></int>	1, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
##	\$	EnclosedPorch	<int></int>	0 0 228 0 0 0 0 0 0 0 0 0 0 0 0 0

Nate Wells (Math 243: Stat Learning)

Investigate Predictors

Look at the list of variables:

names(house)

##	[1]	"SalePrice"	"Id"
##	[5]	"Foundation"	"LotShape"
##	[9]	"RoofMatl"	"ScreenPorch"
##	[13]	"BedroomAbvGr"	"TotalBsmtSF"
##	[17]	"BsmtFullBath"	"WoodDeckSF"
##	[21]	"GrLivArea"	"MoSold"
##	[25]	"YearBuilt"	"GarageArea"
##	[29]	"EnclosedPorch"	"FullBath"

"Functional" "LandSlope" "MSSubClass" "LotArea" "OverallCond" "TotRmsAbvGrd" "OverallQual" "HalfBath" "BldgType" "SaleCondition" "GarageCars" "OpenPorchSF" "YrSold" "PoolArea" "Fireplaces"

Investigate Predictors

Look at the list of variables:

names(house)

##	[1]	"SalePrice"	"Id"	"Functional"	"BldgType"
##	[5]	"Foundation"	"LotShape"	"LandSlope"	"SaleCondition"
##	[9]	"RoofMatl"	"ScreenPorch"	"MSSubClass"	"GarageCars"
##	[13]	"BedroomAbvGr"	"TotalBsmtSF"	"LotArea"	"OpenPorchSF"
##	[17]	"BsmtFullBath"	"WoodDeckSF"	"OverallCond"	"YrSold"
##	[21]	"GrLivArea"	"MoSold"	"TotRmsAbvGrd"	"PoolArea"
##	[25]	"YearBuilt"	"GarageArea"	"OverallQual"	"Fireplaces"
##	[29]	"EnclosedPorch"	"FullBath"	"HalfBath"	

• Note that the variable Id is not useful as a predictor, but is useful for referring to houses in the data set.

Investigate Predictors

Additionally, note that several of the variables are factors, so should be converted to a collection of dummy variables.

Investigate Predictors

Additionally, note that several of the variables are factors, so should be converted to a collection of dummy variables.

Moreover, for a few variables, some levels are very underrepresented.

library(skimr)
house %>% skim(RoofMatl)

Table 7: Data summary

Name Number of rows Number of columns	Piped data 200 31
Column type frequency: factor	1
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
RoofMatl	0	1	FALSE	5	Com: 195, Tar: 2, Mem: 1, WdS: 1

Data Splitting

We can use the rsample package to create a test-training split

Data Splitting

We can use the rsample package to create a test-training split

• The rsample package allows us to create stratified samples in addition to simple random samples

Data Splitting

We can use the rsample package to create a test-training split

• The rsample package allows us to create stratified samples in addition to simple random samples

```
library(rsample)
set.seed(1221)
data_split <- initial_split(house , prop = 3/4)
train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Preprocessing with recipes

Create a recipe and update roles

We now create a recipe for some data pre-processing

```
library(recipes)
house_rec <-
  recipe(SalePrice ~ ., data = train_data) %>%
  update_role(Id, new_role = "ID")
```

Preprocessing with recipes

Create a recipe and update roles

We now create a recipe for some data pre-processing

```
library(recipes)
house_rec <-
    recipe(SalePrice ~ ., data = train_data) %>%
    update_role(Id, new_role = "ID")
```

summary(house_rec)

##	# 1	A tibble: 31 x	4		
##		variable	type	role	source
##		<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
##	1	Id	numeric	ID	original
##	2	Functional	nominal	predictor	original
##	3	BldgType	nominal	predictor	original
##	4	Foundation	nominal	predictor	original
##	5	LotShape	nominal	predictor	original
##	6	LandSlope	nominal	predictor	original
##	7	SaleCondition	nominal	predictor	original
##	8	RoofMatl	nominal	predictor	original
##	9	ScreenPorch	numeric	predictor	original
##	10	MSSubClass	numeric	predictor	original
##	#	with 21 mon	re rows		

Add steps to recipes

Consider the relationship between of sale price and lot area:

Add steps to recipes

Consider the relationship between of sale price and lot area:

Accuracy of a linear model may improve by performing log transformation on LotArea:

Adding steps to recipes

```
Let's update our recipe:
```

```
house_rec <- house_rec %>%
step_log(LotArea, base = 10)
```

house_rec

```
## Data Recipe
##
##
   Inputs:
##
         role #variables
##
            TD
##
                         1
##
      outcome
                         1
                        29
##
    predictor
##
##
   Operations:
##
## Log transformation on LotArea
```

Create New Variables from Old

The original data set contains variables FullBath and HalfBath. But we want a measure of total number of baths:

$$TotalBath = FullBath + \frac{1}{2}HalfBath$$

Create New Variables from Old

The original data set contains variables FullBath and HalfBath. But we want a measure of total number of baths:

$$TotalBath = FullBath + \frac{1}{2}HalfBath$$

We can also add a mutate step in our recipe to do just this:

```
house_rec <- house_rec %>%
  step_mutate(TotalBath = FullBath+0.5*HalfBath) %>%
  step rm(FullBath, HalfBath)
house rec
## Data Recipe
##
## Inputs:
##
##
         role #variables
##
           TD
                        1
##
      outcome
                        1
##
    predictor
                       29
##
## Operations:
##
## Log transformation on LotArea
## Variable mutation for TotalBath
## Delete terms FullBath, HalfBath
```

Create Dummy Variables

Recall that 7 of our variables are factors (Functional, BldgType, Foundation, LotShape, LandSlope, SaleCondition, RoofMatl). To create appropriate dummy variables:

```
house_rec <- house_rec %>% step_dummy(all_nominal(), -all_outcomes())
house_rec
```

Data Recipe ## ## Inputs: ## ## role #variables ## TD 1 ## outcome 1 ## 29 predictor ## ## Operations: ## ## Log transformation on LotArea ## Variable mutation for TotalBath ## Delete terms FullBath, HalfBath ## Dummy variables from all_nominal(), -all_outcomes()

Create Dummy Variables

Recall that 7 of our variables are factors (Functional, BldgType, Foundation, LotShape, LandSlope, SaleCondition, RoofMatl). To create appropriate dummy variables:

```
house_rec <- house_rec %>% step_dummy(all_nominal(), -all_outcomes())
house_rec
```

```
## Data Recipe
##
## Inputs:
##
##
         role #variables
##
           TD
##
      outcome
                        1
                       29
##
    predictor
##
## Operations:
##
## Log transformation on LotArea
## Variable mutation for TotalBath
## Delete terms FullBath, HalfBath
## Dummy variables from all_nominal(), -all_outcomes()
```

- The first argument all_nominal selects all variables that are either factors or characters
- The second argument -all_outcomes removes any response variables from this step

Create Dummy Variables

Recall that 7 of our variables are factors (Functional, BldgType, Foundation, LotShape, LandSlope, SaleCondition, RoofMatl). To create appropriate dummy variables:

```
house_rec <- house_rec %>% step_dummy(all_nominal(), -all_outcomes())
house_rec
```

```
## Data Recipe
##
## Inputs:
##
##
         role #variables
##
           TD
##
      outcome
                        1
                       29
##
    predictor
##
## Operations:
##
## Log transformation on LotArea
## Variable mutation for TotalBath
## Delete terms FullBath, HalfBath
## Dummy variables from all_nominal(), -all_outcomes()
```

- The first argument all_nominal selects all variables that are either factors or characters
- The second argument -all_outcomes removes any response variables from this step

Preprocessing with recipes

Remove Problematic Predictors

Finally, to avoid the situation where an infrequently occuring level doesn't exist in the training or test sets:

```
house_rec <- house_rec %>% step_zv(all_predictors())
house_rec
```

Data Recipe ## ## Inputs: ## ## role #variables ## 1 1 ## outcome 29 ## predictor ## ## Operations: ## ## Log transformation on LotArea ## Variable mutation for TotalBath ## Delete terms FullBath, HalfBath ## Dummy variables from all_nominal(), -all_outcomes() ## Zero variance filter on all_predictors()

Preprocessing with recipes

Remove Problematic Predictors

Finally, to avoid the situation where an infrequently occuring level doesn't exist in the training or test sets:

```
house_rec <- house_rec %>% step_zv(all_predictors())
house_rec
```

```
## Data Recipe
##
## Inputs:
##
##
         role #variables
##
                        1
##
      outcome
                        1
##
    predictor
                       29
##
## Operations:
##
## Log transformation on LotArea
## Variable mutation for TotalBath
## Delete terms FullBath, HalfBath
## Dummy variables from all_nominal(), -all_outcomes()
## Zero variance filter on all_predictors()
```

The step_zv verb removes columns from the training data which have a single value

Workflows

Why create a recipe when we could just as easily perform the pre-processing steps using dplyr?

Workflows

Why create a recipe when we could just as easily perform the pre-processing steps using dplyr?

- **1** The recipe allows us to apply the same procedures to both test and training data.
- O The recipe gives instructions for processing the data without actually performing that action

Workflows

Why create a recipe when we could just as easily perform the pre-processing steps using dplyr?

- **1** The recipe allows us to apply the same procedures to both test and training data.
- Phe recipe gives instructions for processing the data without actually performing that action

To use our recipe across several steps, we will use a workflow, which will

- 1 Process the recipe using the training set
- Apply the recipe to the training set
- **6** Apply the recipe to the test set

Create the workflow

```
house_mod <- linear_reg() %>% set_engine("lm")
```

```
house_wflow <- workflow() %>%
add_model(house_mod) %>%
add recipe(house rec)
```

house_wflow

```
## == Workflow ==========
## Preprocessor: Recipe
## Model: linear_reg()
##
## -- Preprocessor ------
## 5 Recipe Steps
##
## * step_log()
## * step mutate()
## * step_rm()
## * step_dummy()
## * step zv()
##
## -- Model -----
## Linear Regression Model Specification (regression)
##
```

Fitting Models with Workflows

house_fit <- house_wflow %>% fit(data = train_data)

house_fit %>% pull_workflow_fit() %>% tidy()

```
## # A tibble: 46 x 5
```

##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	2335263.	3579757.	0.652	0.516
##	2	ScreenPorch	112.	57.7	1.93	0.0557
##	3	MSSubClass	-249.	140.	-1.78	0.0781
##	4	GarageCars	-684.	5990.	-0.114	0.909
##	5	${\tt BedroomAbvGr}$	-2812.	4198.	-0.670	0.504
##	6	TotalBsmtSF	17.1	8.79	1.95	0.0543
##	7	LotArea	-15.0	19935.	-0.000752	0.999
##	8	OpenPorchSF	-22.4	45.5	-0.491	0.624
##	9	${\tt BsmtFullBath}$	14277.	5125.	2.79	0.00632
##	10	WoodDeckSF	1.69	18.8	0.0900	0.928
##	# with 36 more rows					

Preprocessing with recipes

Making predictions with workflow

house_preds<- predict(house_fit, test_data)
house_preds</pre>

A tibble: 50×1 ## ## .pred <dbl> ## ## 1 143084. 2 131894. ## ## 3 250360. ## 4 205571. ## 5 114775. ## 6 198707. ## 7 219853. ## 8 179459. ## 9 190201. ## 10 122767.

... with 40 more rows

Evaluate performance


```
rbind(
  rmse(house_results, truth = SalePrice, estimate = .pred),
  rsq(house_results, truth = SalePrice, estimate = .pred)
)
```

```
## # A tibble: 2 x 3
## .metric .estimator .estimate
## <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 rmse standard 24410.
## 2 rsq standard 0.871
```