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Outline

In today’s class, we will. ..

® Discuss theoretical foundation for linear regression
® Assess accuracy of simple linear models

® |Implement simple linear regression in R
p p g
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., X,) and a quantitative respone
variable Y, and that
Y =f(X,...,Xp) +¢
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., X,) and a quantitative respone
variable Y, and that
Y =f(X,...,Xp) +¢

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

F(x1, %2, ., Xp) = Po + Bixa + -+ + Bpxp
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., X,) and a quantitative respone
variable Y, and that

Y =f(X,...,Xp) +¢
® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:
f(x1, %2, .., Xp) = Bo+ Bix1 + -+ + BpXp
(That is, the change in f is constant per unit change in any of the inputs.)
® If Y depends on only 1 predictor X, then the linear model reduces to

f(x) = Bo + Pix
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., X,) and a quantitative respone

variable Y, and that

Y =f(X,...,Xp) +¢

® The function f could theoretically take many forms. But the simplest form assumes f

is a linear function:

f(xi,x2, ..., %p) = Bo + Prxa + - + Bpxp
(That is, the change in f is constant per unit change in any of the inputs.)

® If Y depends on only 1 predictor X, then the linear model reduces to

f(x) = Bo + Pix

® We'll use the Simple Linear Model (SLM) to build intuition about all linear models
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® Suppose we have one or more predictors (X1, Xz, ..., X,) and a quantitative respone

variable Y, and that

Y =f(X,...,Xp) +¢

® The function f could theoretically take many forms. But the simplest form assumes f

is a linear function:

f(xi,x2, ..., %p) = Bo + Prxa + - + Bpxp
(That is, the change in f is constant per unit change in any of the inputs.)

® If Y depends on only 1 predictor X, then the linear model reduces to

f(x) = Bo + Pix

® We'll use the Simple Linear Model (SLM) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020 4/25



Foundations
00@000000

Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model

?:Bo+B1X1+"-+BPXp
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model

?:Bo+B1X1+"-+BPXp

® So we are estimating an approximation to a relationship between response and
predictors.
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.
® Each observation (x;, y;) has its own residual e;, which is the difference between the
observed (y;) and predicted (¥;) value:

€ =Yi—VYi
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.
® Each observation (x;, y;) has its own residual e;, which is the difference between the
observed (y;) and predicted (¥;) value:

€ =Yi—VYi

State-by-State Graduation and Poverty Rates, with Residual Heights

@2

High School Graduation Rate, Y

Poverty Rate, X

September 9th, 2020

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy



Foundations
0O0000e000

Residuals

® Residuals are the leftover variation in the data after accounting for model fit.
® Each observation (x;, y;) has its own residual e;, which is the difference between the
observed (Y;) and predicted (§;) value:

€ =Yi—Yi

State-by-State Graduation and Poverty Rates, with Residual Heights
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High School Graduation Rate, Y
i
&

Poverty Rate, X

® D.C's residual is
e=y—§=86—8l1=49
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates.

Residuals for Graduation Rate

Poverty Rate, X
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates.

Residuals for Graduation Rate

Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates.

Residuals for Graduation Rate
o
o

Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

RSS=el+---+ée
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

RSS=el+---+ée

Note that RSS = nMSE.

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020 11/25



Foundations
0O0000000e

Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as
RSS=el+---+ée
Note that RSS = nMSE.

® Using calculus, we can show that RSS is minimized when

Yo (xi =)y —¥)
> (xi = %)?

Bo =y — pix

b=
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters
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® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: [, (1

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020 13/25



Assessing Accuracy
0®000000000000

Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: [, (1

® Statistics: Bo, ﬁA1
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Statistical Inference

Goal: Use statistics calculated from data to make estimates about unknown
parameters

Parameters: (5o, 51
® Statistics: Bo, ﬁA1

® Tools: confidence intervals, hypothesis tests
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: (5o, 51
® Statistics: Bo, 31
® Tools: confidence intervals, hypothesis tests

® The Problems: Our model will change if built using a different random sample. So in
addition to estimates, we need to know about variability
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The Confidene Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates
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The Confidene Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + tZ - SE(H)
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The Confidene Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + tZ - SE(H)

® Where t{ is the 1 — (1 — C)/2 quantile for the sampling distribution of §
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The Confidene Interval

Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + tZ - SE(H)

Where t£ is the 1 — (1 — C)/2 quantile for the sampling distribution of §

And where SE(@) is the standard error of 6, or the standard deviation of the sampling
distribution
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Common Regression Assumptions

In order to safely use simple linear regression, use make use of these assumptions:

@ Y is related to x by a simple linear regression model.

Y=00+/X+e
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Common Regression Assumptions

In order to safely use simple linear regression, use make use of these assumptions:
@ Y is related to x by a simple linear regression model.

Y=00+/X+e

® The errors e1, €, ..., e, are independent of one another.
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Common Regression Assumptions

In order to safely use simple linear regression, use make use of these assumptions:
@ Y is related to x by a simple linear regression model.
Y =050+ X +e
® The errors e1, €, ..., e, are independent of one another.

© The errors have a common variance Var(e) = ¢°.
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Common Regression Assumptions

In order to safely use simple linear regression, use make use of these assumptions:
@ Y is related to x by a simple linear regression model.

Y=00+/X+e

® The errors e1, €, ..., e, are independent of one another.

© The errors have a common variance Var(e) = ¢°.

@ The errors are normally distributed: € ~ N(0, 0?)
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)
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The Sampling Distribution of S

Sampling distribution of /[3;1
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The Sampling Distribution of S

Sampling distribution of /[3;1

Density

By

0.4 0.5 0.6 0.7 0.8 0.9 1.0
B,

Nate Wells (Math 243; i ing Model Accuracy



Assessing Accuracy
000000000 e0000

The Sampling Distribution of S

Sampling distribution of /[3;1
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The Sampling Distribution of S

The Sampling Distribution has the following characteristics:

© Centered at (1, i.e. E(61) = 6.

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020



Assessing Accuracy
000000000 0e000

The Sampling Distribution of S

The Sampling Distribution has the following characteristics:

© Centered at (1, i.e. E(61) = 6.

~ 2
® Var(p) = Xx
® where SXX = 27:1()(" —x)?
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The Sampling Distribution of S

The Sampling Distribution has the following characteristics:

© Centered at (1, i.e. E(61) = 6.

~ 2
® Var(p) = Xx
® where SXX = 27:1()(" —x)?

© HilX ~ N(B1, Soz)-
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Approximating the Sampling Dist. of /31

Our best guess of [ is /3’1. And since we have to estimate o with %> = RSS/n — 2, the
distribution isn’t normal, but. ..

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020 23 /25



Assessing Accuracy
0000000000080

Approximating the Sampling Dist. of /31

Our best guess of [ is /3’1. And since we have to estimate o with %> = RSS/n — 2, the
distribution isn’t normal, but. ..

T with n - 2 degrees of freedom.
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Approximating the Sampling Dist. of /31

Our best guess of [ is /3’1. And since we have to estimate o with %> = RSS/n — 2, the
distribution isn’t normal, but. ..

T with n - 2 degrees of freedom.

And we summarize that approximate sampling distribution using a Cl:

31 * tay2,n-2 * SE(BI)

where

SE(B1) = s/1/(5XX)
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Approximating the Sampling Dist. of /31

Our best guess of [ is /3’1. And since we have to estimate o with %> = RSS/n — 2, the
distribution isn’t normal, but. ..

T with n - 2 degrees of freedom.

And we summarize that approximate sampling distribution using a Cl:

31 * tay2,n-2 * SE(BI)

where

SE(B1) = s/1/(5XX)

Interpretation We are 95% confident that the true slope between x and y lies between LB
and UB.
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

Ho: ) =0Ha: 82 #£0
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

b: B =0Ha: B #0

We know that

51 B
SE(51)
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

Ho: ) =0Ha: 82 #£0

We know that

51 B
SE(51)

T will be t distributed with n — 2 degrees of freedom and with SE(Bl) calculated the same
as in the Cl.
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Inference for

Often less interesting (but not always!). You use the t-distribution again but with a
different SE.
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