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Foundations Assessing Accuracy

Outline

In today’s class, we will. . .

• Discuss theoretical foundation for linear regression
• Assess accuracy of simple linear models
• Implement simple linear regression in R
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Foundations Assessing Accuracy

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative respone
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

(That is, the change in f is constant per unit change in any of the inputs.)

• If Y depends on only 1 predictor X , then the linear model reduces to

f̂ (x) = β0 + β1x

• We’ll use the Simple Linear Model (SLM) to build intuition about all linear models
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Foundations Assessing Accuracy

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear

• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.
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Foundations Assessing Accuracy

SLR Review
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State−by−State Graduation and Poverty Rates

• Suppose we want to model graduation
rate Y as a function of poverty rate X

• Let’s assume a linear relationship

Y = β0 + β1X + ε

• Model (hand-fitted):

Ŷ = β̂0 + β̂1X = 96.2− 0.9X
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Foundations Assessing Accuracy

Residuals

• Residuals are the leftover variation in the data after accounting for model fit.
• Each observation (xi , yi ) has its own residual ei , which is the difference between the
observed (yi) and predicted (ŷi) value:

ei = yi − ŷi
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State−by−State Graduation and Poverty Rates, with Residual Heights

D.C.’s residual is
e = y − ŷ = 86− 81.1 = 4.9
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ei = yi − ŷi
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e = y − ŷ = 86− 81.1 = 4.9

Nate Wells (Math 243: Stat Learning) Assessing Model Accuracy September 9th, 2020 8 / 25



Foundations Assessing Accuracy

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:
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Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.
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Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

D.C.
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Foundations Assessing Accuracy

Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS = e2
1 + · · ·+ e2

n

Note that RSS = nMSE.

• Using calculus, we can show that RSS is minimized when

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄
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Assessing Accuracy
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Foundations Assessing Accuracy

Statistical Inference

• Goal: Use statistics calculated from data to make estimates about unknown
parameters

• Parameters: β0, β1

• Statistics: β̂0, β̂1

• Tools: confidence intervals, hypothesis tests

• The Problems: Our model will change if built using a different random sample. So in
addition to estimates, we need to know about variability
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Foundations Assessing Accuracy

The Confidene Interval

• Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

• A C -level confidence interval for a parameter θ using the statistic θ̂ takes the form

θ̂ ± t∗
C · SE(θ̂)

• Where t∗
C is the 1− (1− C)/2 quantile for the sampling distribution of θ̂

• And where SE(θ̂) is the standard error of θ̂, or the standard deviation of the sampling
distribution
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Foundations Assessing Accuracy

Common Regression Assumptions

In order to safely use simple linear regression, use make use of these assumptions:

1 Y is related to x by a simple linear regression model.

Y = β0 + β1X + ε

2 The errors e1, e2, . . . , en are independent of one another.

3 The errors have a common variance Var(ε) = σ2.

4 The errors are normally distributed: ε ∼ N(0, σ2)
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The Sampling Distribution of β̂1

Assume the following true model:

f (x) = 12 + .7x ; ε ∼ N(0, 4)
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The Sampling Distribution of β̂1

Sampling distribution of β̂1
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Foundations Assessing Accuracy

The Sampling Distribution of β̂1

The Sampling Distribution has the following characteristics:

1 Centered at β1, i.e. E(β̂1) = β.

2 Var(β̂1) = σ2

SXX .
• where SXX =

∑n
i=1(xi − x̄)2

3 β̂1|X ∼ N(β1,
σ2

SXX ).
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Foundations Assessing Accuracy

Approximating the Sampling Dist. of β̂1

Our best guess of β1 is β̂1. And since we have to estimate σ with σ̂2 = RSS/n − 2, the
distribution isn’t normal, but. . .

T with n - 2 degrees of freedom.

And we summarize that approximate sampling distribution using a CI:

β̂1 ± tα/2,n−2 ∗ SE(β̂1)

where

SE(β̂1) = s/
√

(SXX)

Interpretation We are 95% confident that the true slope between x and y lies between LB
and UB.
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Hypothesis test for β̂1

Suppose we are interested in testing the claim that the slope is zero.

H0 : β0
1 = 0HA : β0

1 6= 0

We know that

T = β̂1 − β0
1

SE(β̂1)

T will be t distributed with n − 2 degrees of freedom and with SE(β̂1) calculated the same
as in the CI.
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Foundations Assessing Accuracy

Inference for β̂0

Often less interesting (but not always!). You use the t-distribution again but with a
different SE .
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