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Multiple Regression Assessing Model Accuracy

Outline

In today’s class, we will. . .
• Generalize the simple regression model to include more than 1 predictor
• Quantify model accuracy for linear regression models (both simple and multiple)
• Implement multiple regression in R
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Multiple Regression Assessing Model Accuracy

Section 1

Multiple Regression
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Multiple Regression Assessing Model Accuracy

Many Simple Linear Regression Models?

We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

• Response: Home price
• Predictors: square feet, number of bedrooms, number of bathrooms
• Response: Professor age in photo
• Predictors: number of static lines, proportion gray hair, skin laxity

In each case, we could create simple linear regression models for each predictor variable.
• But its not clear how to combine estimates from multiple models.
• The results may be misleading. Several explanatory variables may be highly correlated.
• And even if none of the predictors have strong association with the response, it is
likely we will observe a significant predictor just due to chance.

Could we get better predictive power by including all explanatory variables in the same
model?
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Multiple Regression Assessing Model Accuracy

Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function f of one predictor variable X :

Y = f (X) + ε

and estimate f using

Ŷ = f̂ (X) = β̂0 + β̂1X

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination f of p predictors X1,X2, . . . ,Xp:

Y = f (X1, . . . ,Xp) + ε
and estimate f using

Ŷ = f̂ (X1, . . . ,Xp) = β̂0 + β̂1X1 + β̂2X2 + · · ·+ β̂pXp

• In the MLR model, we allow predictors to either be quantitative or binary categorical
(i.e taking values 0 or 1 corresponding to failure or success)

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 5 / 26



Multiple Regression Assessing Model Accuracy

Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function f of one predictor variable X :

Y = f (X) + ε

and estimate f using
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Multiple Regression Assessing Model Accuracy

Finding Parameters

To create an SLR model, we found the equation of a line that minimizes RSS, where

RSS =
n∑

i=1

(yi − ŷi )2 =
n∑

i=1

(yi − β̂0 − β̂1x1),

which has the solution

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 β̂0 = ȳ − β̂1x̄

And in R, we computed the coefficients using
my_mod<-lm(Y ~ X, data = my_data)
summary(my_mod)

To create an MLR model. . .

we do the exact same thing!
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(yi − ŷi )2 =
n∑

i=1

(yi − β̂0 − β̂1x1),

which has the solution

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
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Multiple Regression Assessing Model Accuracy

Finding Parameters MLR

To create a MLR model, we find the equation of a hyperplane in Rp+1 that minimizes
RSS, where

RSS =
n∑

i=1

(yi − ŷi )2 =
n∑

i=1

(yi − β̂0 − β̂1x1 − · · · − β̂pxp)2,

which has the solution
β̂ = (XTX)−1XTy

• If we have 2 predictors, the equation describes a plane in 3D space.

We even use the exact same R code to fit the linear model:
my_mod<-lm(Y ~ X1 + X2 + ... + Xp, data = my_data)

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 7 / 26



Multiple Regression Assessing Model Accuracy

Finding Parameters MLR

To create a MLR model, we find the equation of a hyperplane in Rp+1 that minimizes
RSS, where

RSS =
n∑

i=1

(yi − ŷi )2 =
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Multiple Regression Assessing Model Accuracy

The Plane of Best Fit

An interactive graphic available under Monday 9-14 on schedule page on course website
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Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income
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R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

0

500

1000

1500

2000

5000 10000
Credit Limit (in $)

D
eb

t (
in

 $
)

Debt and Limit

R = 0.86 ˆDebt = −292.8 + 0.17 · Limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

Debt and Income

R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

0

500

1000

1500

2000

5000 10000
Credit Limit (in $)

D
eb

t (
in

 $
)

Debt and Limit

R = 0.86 ˆDebt = −292.8 + 0.17 · Limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

Debt and Income

R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

0

500

1000

1500

2000

5000 10000
Credit Limit (in $)

D
eb

t (
in

 $
)

Debt and Limit

R = 0.86 ˆDebt = −292.8 + 0.17 · Limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

Debt and Income

R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

0

500

1000

1500

2000

5000 10000
Credit Limit (in $)

D
eb

t (
in

 $
)

Debt and Limit

R = 0.86 ˆDebt = −292.8 + 0.17 · Limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

Debt and Income

R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

0

500

1000

1500

2000

5000 10000
Credit Limit (in $)

D
eb

t (
in

 $
)

Debt and Limit

R = 0.86 ˆDebt = −292.8 + 0.17 · Limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

Debt and Income

R = 0.46 ˆDebt = 246.51 + 6.048 · Income

Both variables have some explanatory power for Debt.
Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 9 / 26



Multiple Regression Assessing Model Accuracy

The Regression Plane

How do Limit and Income together explain Debt?
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Multiple Regression Assessing Model Accuracy

Multiple Regression for Debt

Let’s find the MLR model
mod<-lm(Balance ~ Limit + Income, data = Credit)

And investigate the regression table
summary(mod)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.1792604 19.464801525 -19.78850 3.878764e-61
## Limit 0.2643216 0.005879729 44.95471 7.717386e-158
## Income -7.6633230 0.385072058 -19.90101 1.260933e-61

Which gives us the regression equation:

ˆDebt = −385.179 + 0.264 · Limit− 0.7663 · Income

• For fixed value of Income, increasing Credit Limit by $1 increases debt by an average
of $0.264.
• While for fixed value of Limit, increasing Income by $1000 decreases debt by an
average of $7.66.
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Multiple Regression Assessing Model Accuracy

Comparing MLR and SLR

Wait. . .

• The SLR for Debt and Income was

ˆDebt = 246.51 + 6.048 · Income
• That is, increasing Income by $1000 INCREASED debt by $6.05.
• But the MLR is

ˆDebt = −385.179 + 0.264 · Limit− 0.7663 · Income

• Not only has MLR given us a new rate of change, but it’s completely switched the
direction!
• How is this possible?
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Income and Credit Limit

Let’s consider the relationship between income and credit limit

Y = 2390  + 52 X

R = 0.8
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In a vacuum, as income increases, so too does credit limit.
• So in the SLR model, when we assess the change in Debt due to increase in Income,
we are implicitly also increasing Credit Limit

• We could say Credit Limit is a confounding variable in the SLR model.
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The Regression Plane Revisited

In the MLR model, we may freely change both Income and Credit Limit

• This corresponds to the fact that there is a unique Debt point on the regression plane
for each pair of Income / Credit Limit values.
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Debt vs. Income Revisited

We can lump Credit Limits into 4 brackets (low, med-low, med-high, high) to create a
categorical variable and analyze the SLR for Debt and Income for each level of Credit Limit
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Section 2

Assessing Model Accuracy
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How Strong is a Linear Model?

In an linear model model,
Y = f (X) + ε

So even if we could perfectly predict f using f̂ , our model would still have non-zero MSE.

The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line, is given by

RSE =
√

1
n − 1− p RSS =

√√√√ 1
n − 1− p

n∑
i=1

(yi − ŷi )2

It has the property that

E(RSE) ≈ Var(ε)

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 17 / 26



Multiple Regression Assessing Model Accuracy

How Strong is a Linear Model?

In an linear model model,
Y = f (X) + ε

So even if we could perfectly predict f using f̂ , our model would still have non-zero MSE.

The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line, is given by

RSE =
√

1
n − 1− p RSS =

√√√√ 1
n − 1− p

n∑
i=1

(yi − ŷi )2
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It has the property that

E(RSE) ≈ Var(ε)

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 17 / 26



Multiple Regression Assessing Model Accuracy

Poll

Which of the following is most likely to decrease as more and more predictors are added to
a linear model?

(a) MSE
(b) RSS
(c) RSE
(d) Var(ε)
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The R2 statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

• The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the R2 statistic:

R2 = 1− RSS
TSS where TSS = sumn

i=1(yi − ȳ)2

• The value of R2 is always between 0 and 1, and represents the percentage of
variability in values of the response just due to variability in the predictors.
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Values of Rˆ2

If R2 ≈ 1: nearly all the variability in response is due to variability in the predictor variable.

R = 0.97

R^2 = 0.94
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Values of Rˆ2

If R2 ≈ 0: almost none of the variability in response is due to variability in the predictor
variable.
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Formulas for R2 in terms of correlation

For SLR,

R2 = [Cor(X ,Y )]2 =

[
Cov(X ,Y )√

Var(X)Var(Y )

]2

=

[ ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

]2

For MLR,
R2 =

[
Cor(Y , Ŷ )

]2

We will usually use software to compute R2.
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i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
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Model Accuracy in R

mod_credit<-lm(Balance ~ Income + Limit , data = Credit)

summary(mod_credit)

##
## Call:
## lm(formula = Balance ~ Income + Limit, data = Credit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -232.79 -115.45 -48.20 53.36 549.77
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
## Income -7.66332 0.38507 -19.90 <2e-16 ***
## Limit 0.26432 0.00588 44.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16

We can use summary(mod)$r.sq or summary(mod)$sigma to access R2 and RSE directly.
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Adjusted Rˆ2

• It turns out that the samples’s R2 gives a biased estimate of the variability in the
population explained by the model.

• Instead, we use the adjusted R:

R2
adjusted = 1 −

RSS
TSS

n − 1
n − p − 1

• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.

Why would it be incorrect to conduct p many significant tests comparing each predictor to
the response?

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 25 / 26



Multiple Regression Assessing Model Accuracy

Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.

Why would it be incorrect to conduct p many significant tests comparing each predictor to
the response?

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2020 25 / 26



Multiple Regression Assessing Model Accuracy

The Hypothesis Test

Goal: test whether any predictors are significant.

H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS − RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.
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Density for 4 predictors, 25 observations

If H0 is true, then F is typically close to 1, and rarely much greater.
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