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Assessing Model Accuracy Extending the Linear Model

Outline

In today’s class, we will. . .
• Quantify model accuracy for linear regression models (both simple and multiple)
• Generalize to include categorical variables and non-linear terms
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Assessing Model Accuracy Extending the Linear Model

Section 1

Assessing Model Accuracy
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Assessing Model Accuracy Extending the Linear Model

How Strong is a Linear Model?

In an linear model model,
Y = f (X) + ε

So even if we could perfectly predict f using f̂ , our model would still have non-zero MSE.

The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line, is given by

RSE =
√

1
n − 1− p RSS =

√√√√ 1
n − 1− p

n∑
i=1

(yi − ŷi )2

It has the property that

E(RSE2) ≈ Var(ε)

Nate Wells (Math 243: Stat Learning) MLR: Accuracy and Extensions September 14th, 2020 4 / 24



Assessing Model Accuracy Extending the Linear Model

How Strong is a Linear Model?

In an linear model model,
Y = f (X) + ε

So even if we could perfectly predict f using f̂ , our model would still have non-zero MSE.

The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line, is given by

RSE =
√

1
n − 1− p RSS =

√√√√ 1
n − 1− p

n∑
i=1

(yi − ŷi )2
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Poll 1

Which of the following are most likely to decrease as more and more predictors are added
to a linear model (select all that apply)?

(a) test MSE
(b) training MSE
(c) RSS
(d) RSE
(e) Var(ε)
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Assessing Model Accuracy Extending the Linear Model

The R2 statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

• The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the R2 statistic:

R2 = 1− RSS
TSS where TSS =

n∑
i=1

(yi − ȳ)2

• The value of R2 is always between 0 and 1, and represents the percentage of
variability in values of the response just due to variability in the predictors.
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Assessing Model Accuracy Extending the Linear Model

Values of Rˆ2

If R2 ≈ 1: nearly all the variability in response is due to variability in the predictor variable.

R = 0.97

R^2 = 0.94
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Values of R2

If R2 ≈ 0: almost none of the variability in response is due to variability in the predictor
variable.

R = 0.27

R^2 = 0.07
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Assessing Model Accuracy Extending the Linear Model

Formulas for R2 in terms of correlation

For SLR,

R2 = [Cor(X ,Y )]2 =

[
Cov(X ,Y )√

Var(X)Var(Y )

]2
=

[ ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

]2

For MLR,
R2 =

[
Cor(Y , Ŷ )

]2
We will usually use software to compute R2.
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Model Accuracy in R

mod_credit<-lm(Balance ~ Income + Limit , data = Credit)

summary(mod_credit)

##
## Call:
## lm(formula = Balance ~ Income + Limit, data = Credit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -232.79 -115.45 -48.20 53.36 549.77
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
## Income -7.66332 0.38507 -19.90 <2e-16 ***
## Limit 0.26432 0.00588 44.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16

We can use summary(mod)$r.sq or summary(mod)$sigma to access R2 and RSE directly.
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Assessing Model Accuracy Extending the Linear Model

Adjusted R2

• It turns out that the samples’s R2 gives a biased estimate of the variability in the
population explained by the model.

• Instead, we use the adjusted R:

R2
adjusted = 1 −

RSS
TSS

n − 1
n − p − 1

• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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Assessing Model Accuracy Extending the Linear Model

Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.

Why would it be incorrect to conduct p many significant tests comparing each predictor to
the response?
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Assessing Model Accuracy Extending the Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0
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0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations
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Typical Values of the F statistic

Provided conditions for linear regression are met,

E
[

RSS
n − p − 1

]
= σ2 = Var(ε)

And if H0 is also true, then

E
[

TSS− RSS
p

]
= σ2 = Var(ε)

Hence, if there is truly no relationship between any of the predictors and the response,
then on average,

F = (TSS− RSS)/p
RSS/(n − p − 1) = 1

Moreover, it is unlikely that F is drastically larger than 1.
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Poll 2: TSS and RSS

Suppose we have a linear model with 25 observations and 4 predictors. Which of the
following provides the best evidence of a relationship between the response and at least 1
of the predictors?

(a) TSS = 64, RSS = 4
(b) TSS = 4, RSS = 16
(c) TSS = 48, RSS = 8
(d) TSS = 4, RSS = 4
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R2)?

• If some variables are strongly correlated, remove some redundant ones.
• This process is known as backwards elimination.
• Start with the full model, remove the variable with highest p-value, and refit. Continue

to do so until accuracy ceases to improve.

• If ε is too large, add further variables.
• This process is known as forward selection.
• Start with the null model, create p many SLR models (one for each predictor), and select

the one with best accuracy. Repeat with this new model, creating p − 1 two predictor
models (one for each remaining predictor). Continue until accuracy ceases to improve.

• Is it possible that none of these models will have the best possible accuracy among all
subsets of predictors?
• Yes. But we’ll cover detailed model selection in Chapter 6.
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Section 2

Extending the Linear Model
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Assessing Model Accuracy Extending the Linear Model

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

• It would nice to include qualitative or categorical predictors in our model.
• But if we try to include them naively, we immediately run into trouble:

ˆDebt = f (X1,X2,X3) = β̂0 + β̂1 · Income + β̂2 · Limit + β̂3 ·Gender

Suppose β̂T =
(
−400 −7.5 .25 2.5

)
ˆDebt = f (10, 4000,Female) = −400− 7.5 · 10 + .25 · 4000 + 2.5 · Female =???
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Assessing Model Accuracy Extending the Linear Model

Coding and Dummy Variables

• For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.

• For ‘Gender’, we could code: 1← Female 0← Male

ˆDebt = f (7.5, 4000,Female) = −400− 7.5 · 10 + 0.25 · 4000 + 2.5 · 1 = 527.5

• In general, if X1 is quantitative and X2 is categorical, the resulting model will be

Ŷ = f (X1,X2) = β0 + β1X1 + β2X2 =
{

(β0 + β2) + β1X1, if obs. in 1st level,
β0 + β1X1, if obs. in 2nd level.

Note that both regression lines have the same slope, but different intercept.

Nate Wells (Math 243: Stat Learning) MLR: Accuracy and Extensions September 14th, 2020 19 / 24



Assessing Model Accuracy Extending the Linear Model

Coding and Dummy Variables

• For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.
• For ‘Gender’, we could code: 1← Female 0← Male

ˆDebt = f (7.5, 4000,Female) = −400− 7.5 · 10 + 0.25 · 4000 + 2.5 · 1 = 527.5

• In general, if X1 is quantitative and X2 is categorical, the resulting model will be
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Ŷ = f (X1,X2) = β0 + β1X1 + β2X2 =
{

(β0 + β2) + β1X1, if obs. in 1st level,
β0 + β1X1, if obs. in 2nd level.

Note that both regression lines have the same slope, but different intercept.

Nate Wells (Math 243: Stat Learning) MLR: Accuracy and Extensions September 14th, 2020 19 / 24



Assessing Model Accuracy Extending the Linear Model

Scatterplot
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Ŷ = β̂0 + β̂1X + β̂2G = 2.28 + 1.41X + 0.53G
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The model in R

mod_2<- lm(data = my_data, Y ~ X + G)
summary(mod_2)

##
## Call:
## lm(formula = Y ~ X + G, data = my_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.83811 -0.22167 -0.02565 0.21738 0.66865
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.28381 0.06788 33.645 < 2e-16 ***
## X 1.41447 0.11639 12.153 < 2e-16 ***
## G1 0.53199 0.06452 8.246 8.03e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3174 on 97 degrees of freedom
## Multiple R-squared: 0.728, Adjusted R-squared: 0.7224
## F-statistic: 129.8 on 2 and 97 DF, p-value: < 2.2e-16
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Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable G tells us (select all that apply)

(a) How much we expect the response to change if we increase the value of G from 0 to
1, while holding all else constant.

(b) The difference in the average response between observations in the two categories.

(c) The value of the response variable if G equals 0.

(d) The distance between the two regression lines on the 2d scatterplot
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American,
Asian, Caucasion. (As with Gender, the levels here are incomplete)
For categorical variable Xi with levels j = 1, . . . , k, create a dummy variables xij by

xij =
{
1, obs. in level j,
0, obs. not in level j,

For example,

EthAA =
{
1, obs. is African American,
0, obs. is not African America

EthA =
{
1, obs. is Asian,
0, obs. is not Asian

EthC =
{
1, obs. is Caucasion,
0, obs. is not Caucasion

• Every observation evaluates to 1 in exactly 1 dummy variable.
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Categorical Variables in R

credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary(credit_mod)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -395.7122121 25.890307793 -15.2841834 9.661647e-42
## Limit 0.2645314 0.005894931 44.8743906 6.014584e-157
## Income -7.6671626 0.386036409 -19.8612421 2.508448e-61
## GenderFemale 1.9069535 16.599113684 0.1148828 9.085965e-01
## EthnicityAsian 26.8788662 23.412591822 1.1480517 2.516438e-01
## EthnicityCaucasian 3.7623916 20.399222553 0.1844380 8.537648e-01

ˆBalance = −395.7 + 0.26 · L− 7.67 · I + 1.91 ·GF + 26.88 · EA + 3.76 · EC
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