MLR: Extensions

Nate Wells

Math 243: Stat Learning

September 18th, 2020

Outline

In today's class, we will...

- Generalize MLR to include categorical variables
- Discuss non-linear "linear" regression models

Section 1

Extending the Linear Model

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

• It would nice to include qualitative predictors in our model.

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

 $\text{Balance} = f(X_1, X_2, X_3) = \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{Income} + \hat{\beta}_2 \cdot \text{Limit} + \hat{\beta}_3 \cdot \text{Gender}$

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

$$\text{Balance} = f(X_1, X_2, X_3) = \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{Income} + \hat{\beta}_2 \cdot \text{Limit} + \hat{\beta}_3 \cdot \text{Gender}$$

Suppose
$$\hat{\beta}^{T} = \begin{pmatrix} -400 & -7.5 & .25 & 2.5 \end{pmatrix}$$

 $\hat{\text{Debt}} = f(10, 4000, \text{Female}) = -400 - 7.5 \cdot 10 + .25 \cdot 4000 + 2.5 \cdot \text{Female} =???$

• For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
 - For 'Gender', we could code: $1 \leftarrow \text{Female} \quad 0 \leftarrow \text{Male}$

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
 - For 'Gender', we could code: $1 \leftarrow \mathrm{Female} \quad 0 \leftarrow \mathrm{Male}$

 $\hat{\text{Debt}} = f(7.5, 4000, \text{Female}) = -400 - 7.5 \cdot 10 + 0.25 \cdot 4000 + 2.5 \cdot 1 = 527.5$

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
 - For 'Gender', we could code: $1 \leftarrow \text{Female} \quad 0 \leftarrow \text{Male}$

 $\hat{\text{Debt}} = f(7.5, 4000, \text{Female}) = -400 - 7.5 \cdot 10 + 0.25 \cdot 4000 + 2.5 \cdot 1 = 527.5$

• In general, if X_1 is quantitative and X_2 is categorical, the resulting model will be

$$\hat{Y} = f(X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} (\beta_0 + \beta_2) + \beta_1 X_1, & \text{if obs. in 1st level,} \\ \beta_0 + \beta_1 X_1, & \text{if obs. in 2nd level.} \end{cases}$$

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
 - For 'Gender', we could code: $1 \leftarrow \mathrm{Female} \quad 0 \leftarrow \mathrm{Male}$

 $\hat{\text{Debt}} = f(7.5, 4000, \text{Female}) = -400 - 7.5 \cdot 10 + 0.25 \cdot 4000 + 2.5 \cdot 1 = 527.5$

• In general, if X_1 is quantitative and X_2 is categorical, the resulting model will be

 $\hat{Y} = f(X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 = \begin{cases} (\beta_0 + \beta_2) + \beta_1 X_1, & \text{if obs. in 1st level,} \\ \beta_0 + \beta_1 X_1, & \text{if obs. in 2nd level.} \end{cases}$

Note that both regression lines have the same slope, but different intercept.

Scatterplot

 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 G = 2.28 + 1.41 X + 0.53 G$

The model in R

```
mod 2<- lm(data = my data, Y ~ X + G)
summary(mod 2)
##
## Call:
## lm(formula = Y ~ X + G, data = mv data)
##
## Residuals:
##
       Min 10 Median
                                  30
                                         Max
## -0.78728 -0.16815 0.00389 0.16433 0.58123
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24222 0.06122 36.627 < 2e-16 ***
## X
       1.49117 0.10168 14.665 < 2e-16 ***
## G1
             0.49298 0.05873 8.394 3.87e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2925 on 97 degrees of freedom
## Multiple R-squared: 0.7618, Adjusted R-squared: 0.7569
## F-statistic: 155.1 on 2 and 97 DF, p-value: < 2.2e-16
```

Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable G tells us (select all that apply)

- **a** How much we expect the response to change if we increase the value of G from 0 to 1, while holding all else constant.
- **6** The difference in the average response between observations in the two categories.
- **•** The value of the response variable if *G* equals 0.
- **()** The distance between the two regression lines on the 2d scatterplot

We extend to variables with more than 2 levels by creating binary variables for each level.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X_i with levels j = 1, ..., k, create a dummy variables x_{ij} by

 $x_{ij} = \begin{cases} 1, & \text{obs. in level } j, \\ 0, & \text{obs. not in level } j, \end{cases}$

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X_i with levels j = 1, ..., k, create a dummy variables x_{ij} by

$$x_{ij} = \begin{cases} 1, & \text{obs. in level } j, \\ 0, & \text{obs. not in level } j, \end{cases}$$

For example,

$$\begin{split} \mathrm{Eth}_{AA} &= \begin{cases} 1, & \mathrm{obs.} \text{ is African American,} \\ 0, & \mathrm{obs.} \text{ is not African America} \end{cases} \\ \mathrm{Eth}_{A} &= \begin{cases} 1, & \mathrm{obs.} \text{ is Asian,} \\ 0, & \mathrm{obs.} \text{ is not Asian} \end{cases} \\ \mathrm{Eth}_{C} &= \begin{cases} 1, & \mathrm{obs.} \text{ is Caucasion,} \\ 0, & \mathrm{obs.} \text{ is not Caucasion} \end{cases} \end{split}$$

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X_i with levels $j = 1, \ldots, k$, create a dummy variables x_{ij} by

$$x_{ij} = \begin{cases} 1, & \text{obs. in level } j, \\ 0, & \text{obs. not in level } j, \end{cases}$$

For example,

$$\begin{split} \mathrm{Eth}_{AA} &= \begin{cases} 1, & \mathrm{obs.} \text{ is African American,} \\ 0, & \mathrm{obs.} \text{ is not African America} \end{cases} \\ \mathrm{Eth}_{A} &= \begin{cases} 1, & \mathrm{obs.} \text{ is Asian,} \\ 0, & \mathrm{obs.} \text{ is not Asian} \end{cases} \\ \mathrm{Eth}_{C} &= \begin{cases} 1, & \mathrm{obs.} \text{ is Caucasion,} \\ 0, & \mathrm{obs.} \text{ is not Caucasion} \end{cases} \end{split}$$

• Every observation evaluates to 1 in exactly 1 dummy variable.

Categorical Variables in R

credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary(credit_mod)\$coefficients</pre>

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	-395.7122121	25.890307793	-15.2841834	9.661647e-42
##	Limit	0.2645314	0.005894931	44.8743906	6.014584e-157
##	Income	-7.6671626	0.386036409	-19.8612421	2.508448e-61
##	GenderFemale	1.9069535	16.599113684	0.1148828	9.085965e-01
##	EthnicityAsian	26.8788662	23.412591822	1.1480517	2.516438e-01
##	EthnicityCaucasian	3.7623916	20.399222553	0.1844380	8.537648e-01

 ${\rm Balance} = -395.7 + 0.26 \cdot {\rm L} - 7.67 \cdot {\rm I} + 1.91 \cdot {\rm G}_F + 26.88 \cdot {\rm E}_A + 3.76 \cdot {\rm E}_C$

Categorical Variables in R

credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary(credit_mod)\$coefficients</pre>

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	-395.7122121	25.890307793	-15.2841834	9.661647e-42
##	Limit	0.2645314	0.005894931	44.8743906	6.014584e-157
##	Income	-7.6671626	0.386036409	-19.8612421	2.508448e-61
##	GenderFemale	1.9069535	16.599113684	0.1148828	9.085965e-01
##	EthnicityAsian	26.8788662	23.412591822	1.1480517	2.516438e-01
##	EthnicityCaucasian	3.7623916	20.399222553	0.1844380	8.537648e-01

 $Balance = -395.7 + 0.26 \cdot L - 7.67 \cdot I + 1.91 \cdot G_F + 26.88 \cdot E_A + 3.76 \cdot E_C$

But wait, some of the levels of the categorical variables are missing!

Section 2

Non-linearity

Exam Example

The Exam data set gives midterm score, final exam score, and self-reported hours of sleep prior to the final exam.

```
exam mod <- lm(final ~ midterm + hours, data = Exam)
summary(exam mod)
##
## Call:
## lm(formula = final ~ midterm + hours, data = Exam)
##
## Residuals:
##
      Min
              10 Median 30
                                  Max
## -9.7902 -2.2642 0.0658 1.9715 10.9368
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## midterm 0.65929 0.06375 10.341 < 2e-16 ***
            7.33650 0.23666 31.000 < 2e-16 ***
## hours
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.44 on 97 degrees of freedom
## Multiple R-squared: 0.9254, Adjusted R-squared: 0.9239
## F-statistic: 602 on 2 and 97 DF, p-value: < 2.2e-16
```

Scatterplot

Exam %>% ggplot(aes(x = midterm, y = final))+geom_point()

Scatterplot with hours

Exam %>% ggplot(aes(x = midterm, y = final, color = hours))+geom_point()

Scatterplot with hours

Exam %>% ggplot(aes(x = midterm, y = final, color = hours))+geom_point()

Does the relationship between midterm and final depend on hours of sleep?

Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends on hours slept, we include an **interaction** term in the model:

Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends on hours slept, we include an **interaction** term in the model:

$$\begin{aligned} \mathbf{Y} = & \beta_0 + \beta_1 X_2 + \beta_2 X_2 + \epsilon \qquad \text{Old model} \mathbf{Y} = & \beta_0 + \beta_1 X_2 + \beta_2 X_2 + \beta_3 X_1 X_3 + \epsilon \qquad \text{New :} \\ & \mathbf{Y} = & \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon \qquad \tilde{\beta}_1 = \beta_1 + \beta_3 X_3 \end{aligned}$$

Revised Model

```
exam_mod_int<-lm(final - midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)</pre>
```

```
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -9.6515 -2.2002 -0.0273 1.7879 11.3687
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.91391 22.38489 -0.398
                                             0.691
              0.23444 0.30066 0.780
                                             0.437
## midterm
## hours
               1.87000 3.78889 0.494
                                             0.623
## midterm:hours 0.07321
                         0.05064 1.446
                                             0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```

```
exam_mod_int<-lm(final - midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)</pre>
```

```
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals:
##
      Min
               10 Median
                               30
                                     Max
## -9.6515 -2.2002 -0.0273 1.7879 11.3687
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.91391 22.38489 -0.398
                                              0.691
## midterm
               0.23444 0.30066 0.780
                                              0.437
## hours
                 1.87000 3.78889 0.494
                                              0.623
## midterm:hours 0.07321
                            0.05064
                                    1.446
                                              0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```

 $Y = -2.4 + 0.1 \cdot \text{midterm} + 0.5 \cdot \text{hours} + 0.1 \cdot \text{midterm} \cdot \text{hours} + \epsilon$

```
exam_mod_int<-lm(final ~ midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)</pre>
```

```
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals.
##
      Min
               10 Median
                              30
                                     Max
## -9 6515 -2 2002 -0 0273 1 7879 11 3687
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.91391 22.38489 -0.398
                                              0.691
## midterm
              0.23444 0.30066 0.780
                                              0.437
## hours
               1.87000 3.78889 0.494
                                              0.623
## midterm:hours 0.07321
                           0.05064 1.446
                                              0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```

 $Y = -2.4 + 0.1 \cdot \text{midterm} + 0.5 \cdot \text{hours} + 0.1 \cdot \text{midterm} \cdot \text{hours} + \epsilon$

• The coefficient on the interaction term measures increase in effectiveness of midterm score per unit increase in hours slept.

Other Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Other Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

• This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

- This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.
- But it **is** linear in powers of the predictor.

Poll: What model?

What polynomial degree seems most appropriate for the given data?

- **a** 1
- **b** 2
- **c** 3
- **d** 4
- 6 More than 4

Plotting non-linear regression curves

```
ggplot(emails, aes( x = hour, y = number)) +geom_point() +
geom_smooth(method = "lm", se = F, formula = y ~ poly(x, 4)) +
geom_smooth(method = "lm", se = F, color = "red")
```


Non-linearity 00000000000000000000

Plotting non-linear regression curves II

Modeling with non-linear terms

```
emails_mod<-lm(number ~ poly(hour, degree = 4), data = emails)
summary(emails_mod)</pre>
```

##

```
## Call:
## lm(formula = number ~ poly(hour, degree = 4), data = emails)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -3.5826 -1.8274 0.0919 1.8082 4.1322
##
## Coefficients.
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            5.06122
                                      0.30649 16.514 < 2e-16 ***
## poly(hour, degree = 4)1 0.38386
                                       2,14541 0,179 0,85882
## polv(hour, degree = 4)2 -6,06575
                                       2.14541 -2.827 0.00704 **
## poly(hour, degree = 4)3 -0.09759
                                      2.14541 -0.045 0.96392
## poly(hour, degree = 4)4 -15.20063
                                       2.14541 -7.085 8.58e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 44 degrees of freedom
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5305
## F-statistic: 14.56 on 4 and 44 DF, p-value: 1.193e-07
```