MLR: Extensions

Nate Wells
Math 243: Stat Learning

September 18th, 2020

Outline

In today's class, we will...

- Generalize MLR to include categorical variables
- Discuss non-linear "linear" regression models

Section 1

Extending the Linear Model

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

$$
\text { Balânce }=f\left(X_{1}, X_{2}, X_{3}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} \cdot \text { Income }+\hat{\beta}_{2} \cdot \text { Limit }+\hat{\beta}_{3} \cdot \text { Gender }
$$

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).

- It would nice to include qualitative predictors in our model.
- But if we try to include them naively, we immediately run into trouble:

$$
\begin{gathered}
\text { Balânce }=f\left(X_{1}, X_{2}, X_{3}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} \cdot \text { Income }+\hat{\beta}_{2} \cdot \text { Limit }+\hat{\beta}_{3} \cdot \text { Gender } \\
\text { Suppose } \hat{\beta}^{T}=\left(\begin{array}{llll}
-400 & -7.5 & .25 & 2.5
\end{array}\right)
\end{gathered}
$$

Dêbt $=f(10,4000$, Female $)=-400-7.5 \cdot 10+.25 \cdot 4000+2.5 \cdot$ Female $=? ? ?$

Coding and Dummy Variables

- For binary categorical variables, we create a new quantitative variable by coding the first level as 0 and the second as 1.

Coding and Dummy Variables

- For binary categorical variables, we create a new quantitative variable by coding the first level as 0 and the second as 1.
- For 'Gender', we could code: $1 \leftarrow$ Female $0 \leftarrow$ Male

Coding and Dummy Variables

- For binary categorical variables, we create a new quantitative variable by coding the first level as 0 and the second as 1.
- For 'Gender', we could code: $1 \leftarrow$ Female $0 \leftarrow$ Male

$$
\text { Dêbt }=f(7.5,4000, \text { Female })=-400-7.5 \cdot 10+0.25 \cdot 4000+2.5 \cdot 1=527.5
$$

Coding and Dummy Variables

- For binary categorical variables, we create a new quantitative variable by coding the first level as 0 and the second as 1.
- For 'Gender', we could code: $1 \leftarrow$ Female $0 \leftarrow$ Male

$$
\text { Dêbt }=f(7.5,4000, \text { Female })=-400-7.5 \cdot 10+0.25 \cdot 4000+2.5 \cdot 1=527.5
$$

- In general, if X_{1} is quantitative and X_{2} is categorical, the resulting model will be

$$
\hat{Y}=f\left(X_{1}, X_{2}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}= \begin{cases}\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}, & \text { if obs. in 1st level, } \\ \beta_{0}+\beta_{1} X_{1}, & \text { if obs. in 2nd level. }\end{cases}
$$

Coding and Dummy Variables

- For binary categorical variables, we create a new quantitative variable by coding the first level as 0 and the second as 1.
- For 'Gender', we could code: $1 \leftarrow$ Female $0 \leftarrow$ Male

$$
\text { Dêbt }=f(7.5,4000, \text { Female })=-400-7.5 \cdot 10+0.25 \cdot 4000+2.5 \cdot 1=527.5
$$

- In general, if X_{1} is quantitative and X_{2} is categorical, the resulting model will be

$$
\hat{Y}=f\left(X_{1}, X_{2}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}= \begin{cases}\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}, & \text { if obs. in 1st level, } \\ \beta_{0}+\beta_{1} X_{1}, & \text { if obs. in 2nd level. }\end{cases}
$$

Note that both regression lines have the same slope, but different intercept.

Scatterplot

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\beta}_{2} G=2.28+1.41 X+0.53 G
$$

The model in R

```
mod_2<- lm(data = my_data, Y ~ X + G)
summary(mod_2)
##
## Call:
## lm(formula = Y ~ X + G, data = my_data)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -0.78728 & -0.16815 & 0.00389 & 0.16433 & 0.58123
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 2.24222 0.06122 36.627 < 2e-16 ***
## X 1.49117 0.10168 14.665 < 2e-16 ***
## G1 0.49298 0.05873 8.394 3.87e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2925 on 97 degrees of freedom
## Multiple R-squared: 0.7618, Adjusted R-squared: 0.7569
## F-statistic: 155.1 on 2 and 97 DF, p-value: < 2.2e-16
```


Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable G tells us (select all that apply)
(a) How much we expect the response to change if we increase the value of G from 0 to 1, while holding all else constant.
(b) The difference in the average response between observations in the two categories.
© The value of the response variable if G equals 0 .
(d The distance between the two regression lines on the 2d scatterplot

Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level. In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)

Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level. In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)
For categorical variable X_{i} with levels $j=1, \ldots, k$, create a dummy variables $x_{i j}$ by

$$
x_{i j}= \begin{cases}1, & \text { obs. in level } j \\ 0, & \text { obs. not in level } j\end{cases}
$$

Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.
In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)
For categorical variable X_{i} with levels $j=1, \ldots, k$, create a dummy variables $x_{i j}$ by

$$
x_{i j}= \begin{cases}1, & \text { obs. in level } j \\ 0, & \text { obs. not in level } j\end{cases}
$$

For example,

$$
\begin{gathered}
\operatorname{Eth}_{A A}= \begin{cases}1, & \text { obs. is African American, } \\
0, & \text { obs. is not African America }\end{cases} \\
\operatorname{Eth}_{A}= \begin{cases}1, & \text { obs. is Asian, } \\
0, & \text { obs. is not Asian }\end{cases} \\
\operatorname{Eth}_{C}= \begin{cases}1, & \text { obs. is Caucasion, } \\
0, & \text { obs. is not Caucasion }\end{cases}
\end{gathered}
$$

Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.
In the Credit data set, the Ethnicity variable takes 3 levels: African American, Asian, Caucasion. (As with Gender, the levels here are incomplete)
For categorical variable X_{i} with levels $j=1, \ldots, k$, create a dummy variables $x_{i j}$ by

$$
x_{i j}= \begin{cases}1, & \text { obs. in level } j \\ 0, & \text { obs. not in level } j\end{cases}
$$

For example,

$$
\begin{gathered}
\operatorname{Eth}_{A A}= \begin{cases}1, & \text { obs. is African American, } \\
0, & \text { obs. is not African America }\end{cases} \\
\operatorname{Eth}_{A}= \begin{cases}1, & \text { obs. is Asian, } \\
0, & \text { obs. is not Asian }\end{cases} \\
\operatorname{Eth}_{C}= \begin{cases}1, & \text { obs. is Caucasion, } \\
0, & \text { obs. is not Caucasion }\end{cases}
\end{gathered}
$$

- Every observation evaluates to 1 in exactly 1 dummy variable.

Categorical Variables in R

```
credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary(credit_mod)$coefficients
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & -395.7122121 & 25.890307793 & -15.2841834 & \(9.661647 \mathrm{e}-42\) \\
\#\# Limit & 0.2645314 & 0.005894931 & 44.8743906 & \(6.014584 \mathrm{e}-157\) \\
\#\# Income & -7.6671626 & 0.386036409 & -19.8612421 & \(2.508448 \mathrm{e}-61\) \\
\#\# GenderFemale & 1.9069535 & 16.599113684 & 0.1148828 & \(9.085965 \mathrm{e}-01\) \\
\#\# EthnicityAsian & 26.8788662 & 23.412591822 & 1.1480517 & \(2.516438 \mathrm{e}-01\) \\
\#\# EthnicityCaucasian & 3.7623916 & 20.399222553 & 0.1844380 & \(8.537648 \mathrm{e}-01\)
\end{tabular}
\[
\text { Balânce }=-395.7+0.26 \cdot \mathrm{~L}-7.67 \cdot \mathrm{I}+1.91 \cdot \mathrm{G}_{F}+26.88 \cdot \mathrm{E}_{A}+3.76 \cdot \mathrm{E}_{C}
\]
```


Categorical Variables in R

```
credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary(credit_mod)$coefficients
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & -395.7122121 & 25.890307793 & -15.2841834 & \(9.661647 \mathrm{e}-42\) \\
\#\# Limit & 0.2645314 & 0.005894931 & 44.8743906 & \(6.014584 \mathrm{e}-157\) \\
\#\# Income & -7.6671626 & 0.386036409 & -19.8612421 & \(2.508448 \mathrm{e}-61\) \\
\#\# GenderFemale & 1.9069535 & 16.599113684 & 0.1148828 & \(9.085965 \mathrm{e}-01\) \\
\#\# EthnicityAsian & 26.8788662 & 23.412591822 & 1.1480517 & \(2.516438 \mathrm{e}-01\) \\
\#\# EthnicityCaucasian & 3.7623916 & 20.399222553 & 0.1844380 & \(8.537648 \mathrm{e}-01\)
\end{tabular}
\[
\text { Balânce }=-395.7+0.26 \cdot \mathrm{~L}-7.67 \cdot \mathrm{I}+1.91 \cdot \mathrm{G}_{F}+26.88 \cdot \mathrm{E}_{A}+3.76 \cdot \mathrm{E}_{C}
\]
But wait, some of the levels of the categorical variables are missing!
```


Section 2

Non-linearity

Exam Example

The Exam data set gives midterm score, final exam score, and self-reported hours of sleep prior to the final exam.

The model

```
exam_mod<-lm(final ~ midterm + hours, data = Exam)
summary(exam_mod)
##
## Call:
## lm(formula = final ~ midterm + hours, data = Exam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.7902 -2.2642 0.0658 1.9715 10.9368
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) -40.53841 4.76809 -8.502 2.28e-13 ***
## midterm 0.65929 0.06375 10.341 < 2e-16 ***
## hours 7.33650 0.23666 31.000< 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.44 on 97 degrees of freedom
## Multiple R-squared: 0.9254, Adjusted R-squared: 0.9239
## F-statistic: }602\mathrm{ on 2 and 97 DF, p-value: < 2.2e-16
```


Scatterplot

Exam \%>\% ggplot(aes(x = midterm, $y=$ final $)$)+geom_point()

Scatterplot with hours

Exam $\%>\%$ ggplot(aes ($\mathrm{x}=$ midterm, $\mathrm{y}=$ final, color $=$ hours $)$)+geom_point()

Scatterplot with hours

Exam $\%>\%$ ggplot(aes ($\mathrm{x}=$ midterm, $\mathrm{y}=$ final, color $=$ hours $)$)+geom_point()

Does the relationship between midterm and final depend on hours of sleep?

Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends on hours slept, we include an interaction term in the model:

Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends on hours slept, we include an interaction term in the model:

$$
\begin{array}{lll}
Y=\beta_{0}+\beta_{1} X_{2}+\beta_{2} X_{2}+\epsilon & \text { Old model } Y=\beta_{0}+\beta_{1} X_{2}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{3}+\epsilon & \text { New } \\
Y=\beta_{0}+\tilde{\beta}_{1} X_{1}+\beta_{2} X_{2}+\epsilon & \tilde{\beta}_{1}=\beta_{1}+\beta_{3} X_{3} &
\end{array}
$$

Revised Model

The model

```
exam_mod_int<-lm(final ~ midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.6515 -2.2002 -0.0273 1.7879 11.3687
##
## Coefficients:
## Estimate Std. Error t value Pr (>|t|)
## (Intercept) -8.91391 22.38489 -0.398 0.691
## midterm 
## hours 
## midterm:hours 0.07321 0.05064 1.446 0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```


The model

```
exam_mod_int<-lm(final ~ midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.6515 -2.2002 -0.0273 1.7879 11.3687
##
## Coefficients:
## Estimate Std. Error t value Pr (>|t|)
## (Intercept) -8.91391 22.38489 -0.398 0.691
## midterm 0.23444 0.30066 0.780
```



```
## midterm:hours 0.07321 0.05064 1.446 0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```

$Y=-2.4+0.1 \cdot$ midterm $+0.5 \cdot$ hours $+0.1 \cdot$ midterm \cdot hours $+\epsilon$

The model

```
exam_mod_int<-lm(final ~ midterm + hours + midterm:hours, data = Exam)
summary(exam_mod_int)
##
## Call:
## lm(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.6515 -2.2002 -0.0273 1.7879 11.3687
##
## Coefficients:
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) -8.91391 22.38489 -0.398 0.691
## midterm 0.23444 0.30066 0.780
```



```
## midterm:hours 0.07321 0.05064 1.446 0.152
##
## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
```

$Y=-2.4+0.1 \cdot$ midterm $+0.5 \cdot$ hours $+0.1 \cdot$ midterm \cdot hours $+\epsilon$

- The coefficient on the interaction term measures increase in effectiveness of midterm score per unit increase in hours slept.

Other Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Other Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Including non-linear terms

We can theorize a polynomial model for Y

$$
Y=\beta_{0}+\beta_{1} \cdot X+\beta_{2} \cdot X^{2}+\cdots+\beta_{p} \cdot X^{p}+\epsilon
$$

Including non-linear terms

We can theorize a polynomial model for Y

$$
Y=\beta_{0}+\beta_{1} \cdot X+\beta_{2} \cdot X^{2}+\cdots+\beta_{p} \cdot X^{p}+\epsilon
$$

- This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.

Including non-linear terms

We can theorize a polynomial model for Y

$$
Y=\beta_{0}+\beta_{1} \cdot X+\beta_{2} \cdot X^{2}+\cdots+\beta_{p} \cdot X^{p}+\epsilon
$$

- This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.
- But it is linear in powers of the predictor.

Poll: What model?

What polynomial degree seems most appropriate for the given data?
(a) 1
(b) 2
© 3
c. 4
e More than 4

Plotting non-linear regression curves

```
ggplot(emails, aes( x = hour, y = number)) +geom_point() +
    geom_smooth(method = "lm", se = F, formula = y ~ poly(x, 4 )) +
    geom_smooth(method = "lm", se = F, color = "red")
```


Plotting non-linear regression curves II

Modeling with non-linear terms

```
emails_mod<-lm(number ~ poly(hour, degree = 4), data = emails)
summary(emails_mod)
##
## Call:
## lm(formula = number ~ poly(hour, degree = 4), data = emails)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5826 -1.8274 0.0919 1.8082 4.1322
##
## Coefficients:
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) 5.06122 0.30649 16.514 < 2e-16 ***
## poly(hour, degree = 4)1 0.38386 
## poly(hour, degree = 4)2 -6.06575 2.14541 -2.827 0.00704 **
## poly(hour, degree = 4)3 -0.09759 2.14541 -0.045 0.96392
## poly(hour, degree = 4)4 -15.20063 2.14541 -7.085 8.58e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 44 degrees of freedom
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5305
## F-statistic: 14.56 on 4 and 44 DF, p-value: 1.193e-07
```

