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Outline

In today's class, we will. ..
® Generalize MLR to include categorical variables

® Discuss non-linear “linear” regression models
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).
® |t would nice to include qualitative predictors in our model.

® But if we try to include them naively, we immediately run into trouble:

Balance = (X1, X2, X3) = Bo + 1 - Income + B3> - Limit + B3 - Gender

Nate Wells (Math 243: Stat Learning) MLR: Extensions September 18th, 2020 4/25



Extending the Linear Model
0O@000000

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative (taking values on a scale).
® |t would nice to include qualitative predictors in our model.
® But if we try to include them naively, we immediately run into trouble:
Balance = (X1, X2, X3) = Bo + 1 - Income + B3> - Limit + B3 - Gender
Suppose BT = (—400 —-75 .25 2.5)

Debt = (10,4000, Female) = —400 — 7.5 - 10 + .25 - 4000 + 2.5 - Female =777
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Coding and Dummy Variables

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.
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Coding and Dummy Variables

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.

® For ‘Gender’, we could code: 1 <— Female 0 <« Male

Débt = £(7.5, 4000, Female) = —400 — 7.5 - 10 + 0.25 - 4000 + 2.5 - 1 = 527.5
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Coding and Dummy Variables

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.

® For ‘Gender’, we could code: 1 <— Female 0 <« Male
Débt = f(7.5,4000,Female) =—400—-75-10+0.25-4000+2.5-1 =527.5

® In general, if Xi is quantitative and X is categorical, the resulting model will be

(Bo + B2) + B X1, if obs. in 1st level,

Y = (X1, Xo) = Bo + i Xy + BoXo =
(X, X2) = fo & SuXa + X {Bo—l—ﬁle, if obs. in 2nd level.
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Coding and Dummy Variables

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.

® For ‘Gender’, we could code: 1 <— Female 0 <« Male
Débt = f(7.5,4000, Female) = —400 — 7.5 - 10 + 0.25 - 4000 + 2.5 -1 = 527.5
® In general, if Xi is quantitative and X is categorical, the resulting model will be

(Bo + B2) + B X1, if obs. in 1st level,

Y = f(X1, Xo) = Bo + BiX1 + BoXo =
(X1, %2) = fo+ BuXa + foXe {Bo—l—ﬁle, if obs. in 2nd level.

Note that both regression lines have the same slope, but different intercept.
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Scatterplot

2.0-

0.00 0.25 050 0.75 1.00

Y = Bo+ BiX + oG = 2.28 + 1.41X + 0.53G
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The model in R

mod_2<- 1lm(data = my_data, Y ~ X + G)
summary (mod_2)

#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##

Call:
Im(formula = Y ~ X + G, data = my_data)
Residuals:

Min 1Q Median 3Q Max
-0.78728 -0.16815 0.00389 0.16433 0.58123
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.24222 0.06122 36.627 < 2e-16 ***

X 1.49117 0.10168 14.665 < 2e-16 **x*

G1 0.49298 0.05873  8.394 3.87e-13 *x*x

Signif. codes: 0 '#*x*' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2925 on 97 degrees of freedom

Multiple R-squared: 0.7618, Adjusted R-squared: 0.7569
F-statistic: 155.1 on 2 and 97 DF, p-value: < 2.2e-16
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Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable G tells us (select all that apply)

® How much we expect the response to change if we increase the value of G from 0 to
1, while holding all else constant.

O The difference in the average response between observations in the two categories.
® The value of the response variable if G equals 0.

® The distance between the two regression lines on the 2d scatterplot
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American,
Asian, Caucasion. (As with Gender, the levels here are incomplete)
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American,
Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X; with levels j = 1,..., k, create a dummy variables x; by

i — 1, obs. in level j,
Y7010, obs. not in level j,
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American,
Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X; with levels j = 1,..., k, create a dummy variables x; by
i — 1, obs. in level j,
Y7010, obs. not in level j,

For example,

Ethas — 1, obs. is African American,
AA = 0, obs. is not African America

Etha — 1, obs. is Asian,
AT 0, obs. is not Asian

Ethe — 1, obs. is Caucasion,
c= 0, obs. is not Caucasion
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Categorical Variables with more than 2 levels.

We extend to variables with more than 2 levels by creating binary variables for each level.

In the Credit data set, the Ethnicity variable takes 3 levels: African American,
Asian, Caucasion. (As with Gender, the levels here are incomplete)

For categorical variable X; with levels j = 1,..., k, create a dummy variables x; by

1, obs. in level j,
Xji =
i 0, obs. not in level j,
For example,

Ethas — 1, obs. is African American,
AA = 0, obs. is not African America

Etha — 1, obs. is Asian,
AT 0, obs. is not Asian

Ethe — 1, obs. is Caucasion,
c= 0, obs. is not Caucasion

® Every observation evaluates to 1 in exactly 1 dummy variable.
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Categorical Variables in R

credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary (credit_mod) $coefficients

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) -395.7122121 25.890307793 -15.2841834 9.661647e-42
## Limit 0.2645314 0.005894931 44.8743906 6.014584e-157
## Income -7.6671626 0.386036409 -19.8612421 2.508448e-61
## GenderFemale 1.9069535 16.599113684 0.1148828 9.085965e-01
## EthnicityAsian 26.8788662 23.412591822 1.1480517 2.516438e-01

## EthnicityCaucasian 3.7623916 20.3992225563  0.1844380 8.537648e-01

Balance = —395.7 4+ 0.26 - L — 7.67 - 1+ 1.91 - Gr + 26.88 - E4 + 3.76 - E¢
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Categorical Variables in R

credit_mod <- lm(Balance ~ Limit + Income + Gender + Ethnicity, data = Credit)
summary (credit_mod) $coefficients

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) -395.7122121 25.890307793 -15.2841834 9.661647e-42
## Limit 0.2645314 0.005894931 44.8743906 6.014584e-157
## Income -7.6671626 0.386036409 -19.8612421 2.508448e-61
## GenderFemale 1.9069535 16.599113684 0.1148828 9.085965e-01
## EthnicityAsian 26.8788662 23.412591822 1.1480517 2.516438e-01

## EthnicityCaucasian 3.7623916 20.3992225563  0.1844380 8.537648e-01

Balance = —395.7 4+ 0.26 - L — 7.67 - 1+ 1.91 - Gr + 26.88 - E4 + 3.76 - E¢

But wait, some of the levels of the categorical variables are missing!
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Non-linearity
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Exam Example

The Exam data set gives midterm score, final exam score, and self-reported hours of
sleep prior to the final exam.

Nate Wells (Math 243: Stat Learning) i September 18th



Non-linearity
0O0e000000000000

The model

exam_mod<-1m(final ~ midterm + hours, data = Exam)
summary (exam_mod)

##

## Call:

## Im(formula = final ~ midterm + hours, data = Exam)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.7902 -2.2642 0.0658 1.9715 10.9368

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) -40.53841 4.76809 -8.502 2.28e-13 *x*xx
## midterm 0.65929 0.06375 10.341 < 2e-16 **x
## hours 7.33650 0.23666 31.000 < 2e-16 **x
##t -—-

## Signif. codes: O '#¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3.44 on 97 degrees of freedom
## Multiple R-squared: 0.9254, Adjusted R-squared: 0.9239
## F-statistic: 602 on 2 and 97 DF, p-value: < 2.2e-16
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Exam %> ggplot(aes(x = midterm, y

= final ))+geom_point ()
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Scatterplot with hours

Exam %>% ggplot(aes(x = midterm, y = final, color = hours ))+geom_point()
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Scatterplot with hours

Exam %>% ggplot(aes(x = midterm, y = final, color = hours ))+geom_point()
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Does the relationship between midterm and final depend on hours of sleep?
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Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends
on hours slept, we include an interaction term in the model:
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Interaction Terms

To account for fact that change in final score per unit increase in midterm score depends
on hours slept, we include an interaction term in the model:

Y :ﬂo + ﬂ1X2 + ,32X2 + € Old modelY = 60 + 51X2 + ﬂzXz + ﬁ3X1X3 + € New
Y =fo+AXi+Xote  fi=pi+BXs
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Revised Model
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exam_mod_int<-1m(final ~ midterm + hours + midterm:hours, data = Exam)
summary (exam_mod_int)

##

## Call:

## In(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##

## Residuals:

#it Min 1Q Median 3Q Max

## -9.6515 -2.2002 -0.0273 1.7879 11.3687

#t

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -8.91391 22.38489 -0.398  0.691
## midterm 0.23444  0.30066 0.780  0.437
## hours 1.87000  3.78889 0.494  0.623
## midterm:hours 0.07321  0.05064 1.446  0.152
##

## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16
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exam_mod_int<-1m(final ~ midterm + hours + midterm:hours, data = Exam)
summary (exam_mod_int)

##

## Call:

## In(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##

## Residuals:

#it Min 1Q Median 3Q Max

## -9.6515 -2.2002 -0.0273 1.7879 11.3687

#t

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -8.91391 22.38489 -0.398  0.691
## midterm 0.23444  0.30066 0.780  0.437
## hours 1.87000  3.78889 0.494  0.623
## midterm:hours 0.07321  0.05064 1.446  0.152
##

## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16

Y = —2.4 4+ 0.1 - midterm + 0.5 - hours + 0.1 - midterm - hours + €
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The model

exam_mod_int<-1m(final ~ midterm + hours + midterm:hours, data = Exam)
summary (exam_mod_int)

##

## Call:

## In(formula = final ~ midterm + hours + midterm:hours, data = Exam)
##

## Residuals:

#it Min 1Q Median 3Q Max

## -9.6515 -2.2002 -0.0273 1.7879 11.3687

#t

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -8.91391 22.38489 -0.398  0.691
## midterm 0.23444  0.30066 0.780  0.437
## hours 1.87000  3.78889 0.494  0.623
## midterm:hours 0.07321  0.05064 1.446  0.152
##

## Residual standard error: 3.421 on 96 degrees of freedom
## Multiple R-squared: 0.927, Adjusted R-squared: 0.9248
## F-statistic: 406.5 on 3 and 96 DF, p-value: < 2.2e-16

Y = —2.4 4+ 0.1 - midterm + 0.5 - hours + 0.1 - midterm - hours + €

® The coefficient on the interaction term measures increase in effectiveness of midterm score
per unit increase in hours slept.
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Other Non-linear models

The emails data set consists of the number of emails | receive in a given hour over two
days
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Other Non-linear models

The emails data set consists of the number of emails | receive in a given hour over two
days
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e

® This model is non-linear in the sense that the regression curve is not a straight line.
And that there is non-constant change in Y per unit change in X.
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e

® This model is non-linear in the sense that the regression curve is not a straight line.
And that there is non-constant change in Y per unit change in X.

® But it is linear in powers of the predictor.
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Poll: What model?

What polynomial degree seems most appropriate for the given data?
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Plotting non-linear regression curves

ggplot(emails, aes( x = hour, y = number)) +geom_point() +
geom_smooth(method = "1lm", se = F, formula = y ~ poly(x, 4 )) +
geom_smooth(method = "1lm", se = F, color = "red")
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Plotting non-linear regression curves ||
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Modeling with non-linear terms

emails_mod<-lm(number ~ poly(hour, degree = 4), data = emails)
summary (emails_mod)

##

## Call:

## Im(formula = number ~ poly(hour, degree = 4), data = emails)

#t

## Residuals:

#t Min 1Q Median 3Q Max

## -3.5826 -1.8274 0.0919 1.8082 4.1322

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 5.06122  0.30649 16.514 < 2e-16 ***
## poly(hour, degree = 4)1  0.38386  2.14541 0.179 0.85882

## poly(hour, degree = 4)2 .06575  2.14541 -2.827 0.00704 **
## poly(hour, degree = 4)3 -0.09759  2.14541 -0.045 0.96392

## poly(hour, degree = 4)4 -15.20063  2.14541 -7.085 8.58e-09 *xx
#t -

## Signif. codes: 0 'skk' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#t

## Residual standard error: 2.145 on 44 degrees of freedom
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5305
## F-statistic: 14.56 on 4 and 44 DF, p-value: 1.193e-07
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