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Problems with Linear Model

Outline

In today’s class, we will. . .
• Troubleshoot potential problems with the linear model
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Problems with Linear Model

Section 1

Problems with Linear Model
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Problems with Linear Model

Overview

Given any data set with n ≥ p, there is always a least squares regression equation

• i.e. a hyperplane in Rp+1 that minimizes the squared sum of residuals.

However, if we want to make predictions or perform statistical inference we need to make
sure key assumptions of randomness are met.
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Problems with Linear Model

Common Problems

Most problems fall into 1 of 6 categories:

1 Non-linearity of relationship between predictors and response

2 Correlation of error terms

3 Non-constant variance in error

4 Outliers

5 High-leverage points

6 Collinearity of predictors
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Problems with Linear Model

Non-linearity

In order to fit a linear model, we assume Y = F (X1, . . . ,Xp) + ε, where f is linear.
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But if this assumption is false, our model is likely to have high bias.
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Problems with Linear Model

Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about
values of others.
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Correlated errors lead to underestimates of residual standard error - Producing narrower
confidence intervals and inflating test statistics
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Problems with Linear Model

Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.
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Least squares regression does not minimize RSS; requires more data for accurate
predictions
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Problems with Linear Model

Outliers

While outliers may occur even if model assumptions are met, they do influence accuracy
estimates
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Reduce R2 and increase RSE estimates
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Problems with Linear Model

High Leverage points

Outliers which have extreme values of predictors and response are called high-leverage
points
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Problems with Linear Model

Collinearity

Collinearity occurs when predictors are highly correlated
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Collinearity produces high variance in estimates for β.
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Problems with Linear Model

A Valid Model

Let’s begin by creating a valid linear model to use as a baseline:

Y = 1 + 2X + ε ε ∼ N(0, 0.25)
set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)

ggplot(my_data, aes(x = X , y = Y)) + geom_point()
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Problems with Linear Model

Linear Model

my_mod<-lm(Y ~ X, data = my_data)
beta_0 <- summary(my_mod)$coefficients[1]
beta_1 <- summary(my_mod)$coefficients[2]
c(beta_0, beta_1)

## [1] 1.025947 1.981375

ggplot(my_data, aes(x = X , y = Y)) + geom_point() + geom_smooth(method = "lm", se = F) +
annotate(geom= "text", x = .25, y = 2.5, label = "y = 1.03 + 1.98X")

y = 1.03 + 1.98X
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Problems with Linear Model

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:
• We can use the base R plot function to quickly create all diagnostic plots necessary

• But we then are restricted to plot aesthetics

• On the other hand, we could create more aesthetically pleasing ggplots
• At the cost of needing to wrangle data before plotting or use extra packages

For simplicity, we’ll default to the plot function.
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Problems with Linear Model

Residual Plot

plot(my_mod, 1)
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What is represented along the horizontal axis? Why?

What should we look for?
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Problems with Linear Model

QQ Plot (Don’t cry)

plot(my_mod, 2)
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What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Problems with Linear Model

Scale-Location Plot

plot(my_mod, 3)
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What is represented along the vertical axes? Why?

What should we look for?
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Problems with Linear Model

Leverage Plot

plot(my_mod, 5)
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What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Problems with Linear Model

Plot Quartet
par(mfrow = c(2,2))
plot(my_mod)
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Problems with Linear Model

Now Let’s Break Things!
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