# MLR: Troubleshooting

#### Nate Wells

Math 243: Stat Learning

September 21st, 2020

# Outline

In today's class, we will...

• Troubleshoot potential problems with the linear model

# Section 1

#### Problems with Linear Model

#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

• i.e. a hyperplane in  $\mathbb{R}^{p+1}$  that minimizes the squared sum of residuals.



#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

• i.e. a hyperplane in  $\mathbb{R}^{p+1}$  that minimizes the squared sum of residuals.



However, if we want to make *predictions* or perform *statistical inference* we need to make sure key assumptions of randomness are met.

#### **Common Problems**

Most problems fall into 1 of 6 categories:

- **()** Non-linearity of relationship between predictors and response
- Orrelation of error terms
- 8 Non-constant variance in error
- Outliers
- 6 High-leverage points
- 6 Collinearity of predictors

#### Non-linearity

In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.

### Non-linearity

In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.



#### Non-linearity

In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.



But if this assumption is false, our model is likely to have high bias.

#### Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about values of others.



# Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about values of others.



Correlated errors lead to underestimates of residual standard error - Producing narrower confidence intervals and inflating test statistics

#### Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.



#### Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.



Least squares regression does not minimize RSS; requires more data for accurate predictions

# Outliers

While outliers may occur even if model assumptions are met, they do influence accuracy estimates



# Outliers

While outliers may occur even if model assumptions are met, they do influence accuracy estimates



Reduce  $R^2$  and increase RSE estimates

#### High Leverage points

Outliers which have extreme values of predictors and response are called high-leverage points



# Collinearity

Collinearity occurs when predictors are highly correlated



# Collinearity

Collinearity occurs when predictors are highly correlated



Collinearity produces high variance in estimates for  $\beta$ .

### A Valid Model

Let's begin by creating a valid linear model to use as a baseline:

$$Y = 1 + 2X + \epsilon$$
  $\epsilon \sim N(0, 0.25)$ 

set.seed(700)
X <- runif(80, 0, 1)
e <- runig(80, 0, .25)
Y <- 1 + 2\*X + e
my\_data <- data.frame(X,Y)</pre>

ggplot(my\_data, aes(x = X , y = Y)) + geom\_point()



#### Linear Model

```
my_mod<-lm(Y - X, data = my_data)
beta_0 <- summary(my_mod)$coefficients[1]
beta_1 <- summary(my_mod)$coefficients[2]
c(beta_0, beta_1)
```

## [1] 1.025947 1.981375

```
ggplot(my_data, aes(x = X , y = Y)) + geom_point() + geom_smooth(method = "lm", se = F) +
annotate(geom= "text", x = .25, y = 2.5, label = "y = 1.03 + 1.98X")
```



Goal: Create graphics to assess how well data fits modeling assumptions.

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

• We can use the base R plot function to quickly create all diagnostic plots necessary

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- We can use the base R plot function to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- We can use the base R plot function to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics
- On the other hand, we could create more aesthetically pleasing ggplots

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- We can use the base R plot function to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics
- On the other hand, we could create more aesthetically pleasing ggplots
  - At the cost of needing to wrangle data before plotting or use extra packages

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- We can use the base R plot function to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics
- On the other hand, we could create more aesthetically pleasing ggplots
  - At the cost of needing to wrangle data before plotting or use extra packages

For simplicity, we'll default to the plot function.

# **Residual Plot**

plot(my\_mod, 1)



What is represented along the horizontal axis? Why?

# QQ Plot (Don't cry)

plot(my\_mod, 2)



What is represented along the horizontal and vertical axes? Why?

#### Scale-Location Plot

plot(my\_mod, 3)



What is represented along the vertical axes? Why?

#### Leverage Plot

plot(my\_mod, 5)



What is represented along the horizontal and vertical axes? Why?

### Plot Quartet

par(mfrow = c(2,2))plot(my\_mod)



Nate Wells (Math 243: Stat Learning)

#### Now Let's Break Things!