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Outline

In today’s class, we will. . .
• Look at problematic linear models
• Discuss variable transformations
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Section 1

Valid Linear Model
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A Valid Model

Previously, we created a valid linear model to use as a baseline:

Y = 1 + 2X + ε ε ∼ N(0, 0.25)
set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)

ggplot(my_data, aes(x = X , y = Y)) + geom_point()
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Linear Model

my_mod<-lm(Y ~ X, data = my_data)
beta_0 <- summary(my_mod)$coefficients[1]
beta_1 <- summary(my_mod)$coefficients[2]
c(beta_0, beta_1)

## [1] 1.025947 1.981375
ggplot(my_data, aes(x = X , y = Y)) + geom_point() + geom_smooth(method = "lm", se = F) +

annotate(geom= "text", x = .25, y = 2.5, label = "y = 1.03 + 1.98X")

y = 1.03 + 1.98X
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Plot Quartet
par(mfrow = c(2,2))
plot(my_mod)
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Validation

Assuming the conditions for linear regression are met, then β̂1 and RSE2 are unbiased
estimators of β1 and Var(ε).

Suppose we randomly generate data and fit models a large number of times.
• On average, β̂1 = β1.
• The 95% confidence interval for β̂1 should contain the true value of β1 in
approximately 95% of all intervals.
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Simulations

set.seed(794)

x <- runif(80, 0, 1)

it <- 1000
beta_hats <- rep(NA, it)
capture <- rep(FALSE, it)
for(i in 1:it) {

e <- rnorm(80, 0, .25)
y <- 1 + 2*x + e
m <- lm(y ~ x)
beta_hats[i] <- m$coef[2]
ci <- confint(m)[2, ]
capture[i] <- (ci[1] < 2 & 2 < ci[2])

}
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Distribution of β̂1
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## [1] 1.999127
mean(capture)

## [1] 0.947
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Section 2

Now let’s break things
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Non-constant variance

Y = 1 + 2X + ε ε ∼ N(0,X)
set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, sd = X)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)

ggplot(my_data, aes(x = X , y = Y)) + geom_point() +geom_smooth(method = "lm", se = F)
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The Linear Model

##
## Call:
## lm(formula = Y ~ X, data = my_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.59764 -0.23174 0.04282 0.27996 1.13194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9700 0.1280 7.576 6.21e-11 ***
## X 2.1119 0.2175 9.710 4.57e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5345 on 78 degrees of freedom
## Multiple R-squared: 0.5472, Adjusted R-squared: 0.5414
## F-statistic: 94.28 on 1 and 78 DF, p-value: 4.569e-15
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Diagnostic plots
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Simulations Problematic Model
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## [1] 1.985632
mean(capture)

## [1] 0.906
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A Fix? Weighted least Squares

Each residual contributes to the lm proportional to the reciprocal of its variance.
• This way, all standardized residuals have the same effective variance.
• Downside? We need to estimate the variance of each residual

##
## Call:
## lm(formula = Y ~ X, data = my_data, weights = 1/X^2)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -2.98941 -0.51949 0.08428 0.67098 2.26063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.00807 0.02235 45.1 <2e-16 ***
## X 2.03418 0.14124 14.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 78 degrees of freedom
## Multiple R-squared: 0.7267, Adjusted R-squared: 0.7232
## F-statistic: 207.4 on 1 and 78 DF, p-value: < 2.2e-16
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Section 3

Transformations
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Example: Truck Prices

Can we use the age of a truck to predict what its price should be? Consider a random
sample of 43 pickup trucks from the most recent 20 years.
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Linear model?

–
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2278766.230 238325.6991 -9.561563 6.923503e-12
## year 1143.367 119.1371 9.597075 6.237638e-12
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Linearity and normality
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• Residuals appear normally distributed.
• But data suggests a non-linear relationship
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Variance and leverage
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• One observation (44) appears influential.
• There is evidence of increasing variance in the residuals.
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Transformations

If the diagnostic plots look bad, try to transform variables by applying functions.
pickups <- mutate(pickups, log_price = log(price))
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Variables that span multiple orders of magnitude often benefit from a natural log transformation.

Yt = ln(Y )
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Log-transformed linear model
m2 <- lm(log_price ~ year, data = pickups)
summary(m2)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -258.9980504 26.12294226 -9.914582 2.471946e-12
## year 0.1338934 0.01305865 10.253239 9.342855e-13
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Poll: Interpretation

The slope coefficient in the log-linear model was 0.13. Which of the following
interpretations are correct? Select all that apply

1 Increasing year by 1 increases price by approximately 0.13.

2 Increasing year by 1 produces a relative increase in price of approximately e.13.

3 Increasing year by 1 increases the log-price by approximately 0.13.

4 Increasing year by ln(1) increases price by approximately 0.13.
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Linearity and normality
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• The residuals from this model appear less normal
• But the quadratic trend is now less apparent.
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Constant variance and influence
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• There are no points flagged as influential
• The variance has been stabilized
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Transformations summary

• If a linear model fit to the raw data leads to questionable residual plots, consider
transformations.

• Count data and prices often benefit from transformations.
• The natural log and the square root are the most common, but you can use any

transformation you like.

• Transformations may change model interpretations.
• Non-constant variance is a serious problem but it can sometimes be solved by
transforming the response.

• Transformations can also fix non-linearity, as can polynomials.
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