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Outline

In today's class, we will. ..
® Discuss the Bayes Classifier

® |Implement KNN as estimate for Bayes Classifier
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The Task

Suppose Y is categorical response variable with several levels Ay, ..., Ax.

Goal: Build a model f to classify an observation into levels A or B based on the values of
several predictors X1, Xz, ..., X, (quantitative or categorical)

Y = (X1, Xo,..., Xp) + € where f, e take values in {Ay,..., Ac}
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How do we measure accuracy of our model?
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The Task

Suppose Y is categorical response variable with several levels Ay, ..., Ax.

Goal: Build a model f to classify an observation into levels A or B based on the values of
several predictors X1, Xz, ..., X, (quantitative or categorical)
Y = (X1, Xo,..., Xp) + € where f, e take values in {Ay,..., Ac}

How do we measure accuracy of our model?

® Training data: Compute error rate on observations in training data:

1 n
Training E = - I(yi # Vi
raining Error = ~ gl (i Z9)
where I(y; # §;) is the indicator variable that equals 1 if y; # §; and 0 otherwise.

Nate Wells (Math 243: Stat Learning) K-Nearest Neighbor

September 28th, 2020 4



The Bayes Classifier
0O@00000

The Task

Suppose Y is categorical response variable with several levels Ay, ..., Ax.

Goal: Build a model f to classify an observation into levels A or B based on the values of
several predictors X1, Xz, ..., X, (quantitative or categorical)

Y = (X1, Xo,..., Xp) + € where f, e take values in {Ay,..., Ac}

How do we measure accuracy of our model?

® Training data: Compute error rate on observations in training data:

1 n
Training E = - I(yi # Vi
raining Error = ~ gl (i Z9)
where I(y; # §;) is the indicator variable that equals 1 if y; # §; and 0 otherwise.

® Test data: Compute average proportion of errors on test data

Test Error = Avg. I(yo # )
where ¥y is the predicted class for a test observation with predictor xp.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xp, the value of the response yp is random.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xp, the value of the response yp is random.

We can show that the model which minimizes test error is

f(x0) = argmax; P(Y = A; | X = x0)
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xp, the value of the response yp is random.

We can show that the model which minimizes test error is

f(x0) = argmax; P(Y = A; | X = x0)

® A proof can be found on p. 18-22 of Elements of Statistical Learning (req. Math 391)
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xp, the value of the response yp is random.

We can show that the model which minimizes test error is

f(x0) = argmax; P(Y = A; | X = x0)

® A proof can be found on p. 18-22 of Elements of Statistical Learning (req. Math 391)

® In practice, we cannot build this optimal model, since we don’t know
P(Y = Aj X = Xo)
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Simulation

Suppose Y takes two values A and B, and X; and X, are predictors taking values in [0, 1].
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Simulation

Suppose Y takes two values A and B, and X; and X, are predictors taking values in [0, 1].

Moreover, suppose the probability Y = A given X; = x; and X = x is (3¢ 4 x3)/2
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Simulation

Suppose Y takes two values A and B, and X; and X, are predictors taking values in [0, 1].

Moreover, suppose the probability Y = A given X; = x; and X = x is (3¢ 4 x3)/2
set.seed (1)

n<-200

x1<-runif(n, 0,1 )

x2<-runif(n, 0,1)

p<-(x172 + x272)/2
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Simulation

Suppose Y takes two values A and B, and X; and X, are predictors taking values in [0, 1].

Moreover, suppose the probability Y = A given X; = x; and X = x is (3¢ 4 x3)/2
set.seed (1)

n<-200

x1<-runif(n, 0,1 )

x2<-runif(n, 0,1)

p<-(x172 + x272)/2

Then
A ifxP4+xE>1

f(xo)—argmaij(Y—Aj|X—xo)—{B 2t <1
) 1 2
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Plot 2
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1—Avg. | maxP(Y = A; | X = x0)
j
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =Ai| X = xo))
j

For our simulation, this gives an error of 1/3.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =Ai| X = xo))
J
For our simulation, this gives an error of 1/3.

® Can verify using multivariate calculus or by sampling a large number of times.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =Ai| X = xo))
J
For our simulation, this gives an error of 1/3.

® Can verify using multivariate calculus or by sampling a large number of times.

This is the theoretical lower bound on average error for a classification problem.
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From Bayes Classifier

In theory, the Bayes Classifier is our best model for classification.
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xp. Then

P(Y = Aj| X = x) ~ KXN:/(y, A))
i€eNg
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xp. Then

P(Y = Aj| X = x) ~ KXN:/(y, A))
i€eNg

® Our model is therefore f(x0) = % >_, . I(yi = A}).
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Classify xo for a variety of K
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Simulation

Sketch the classification boundaries for K = 3. What happens for K = 17 As K gets
larger?
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Error Rates

Sketch the graph of KNN error rates as function of K~*
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Extra Practice

Use the first part of the .Rmd file on the course website to generate 5 random points and
form classification boundaries for K =1 and K = 2 KNN.

Then use the second part of the .Rmd file to classify 5 randomly generated points.
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