## K-Nearest Neighbor

#### Nate Wells

Math 243: Stat Learning

September 28th, 2020

## Outline

In today's class, we will...

- Discuss the Bayes Classifier
- Implement KNN as estimate for Bayes Classifier

# Section 1

The Bayes Classifier

Suppose Y is categorical response variable with several levels  $A_1, \ldots, A_k$ .

Goal: Build a model f to classify an observation into levels A or B based on the values of several predictors  $X_1, X_2, \ldots, X_p$  (quantitative or categorical)

 $Y = f(X_1, X_2, \dots, X_p) + \epsilon \quad \text{where } f, \epsilon \text{ take values in } \{A_1, \dots, A_k\}$ 

Suppose Y is categorical response variable with several levels  $A_1, \ldots, A_k$ .

Goal: Build a model f to classify an observation into levels A or B based on the values of several predictors  $X_1, X_2, \ldots, X_p$  (quantitative or categorical)

 $Y = f(X_1, X_2, \dots, X_p) + \epsilon \quad \text{where } f, \epsilon \text{ take values in } \{A_1, \dots, A_k\}$ 

How do we measure accuracy of our model?

Suppose Y is categorical response variable with several levels  $A_1, \ldots, A_k$ .

Goal: Build a model f to classify an observation into levels A or B based on the values of several predictors  $X_1, X_2, \ldots, X_p$  (quantitative or categorical)

 $Y = f(X_1, X_2, \dots, X_p) + \epsilon$  where  $f, \epsilon$  take values in  $\{A_1, \dots, A_k\}$ 

How do we measure accuracy of our model?

• Training data: Compute error rate on observations in training data:

Training Error = 
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

where  $I(y_i \neq \hat{y}_i)$  is the indicator variable that equals 1 if  $y_i \neq \hat{y}_i$  and 0 otherwise.

Suppose Y is categorical response variable with several levels  $A_1, \ldots, A_k$ .

Goal: Build a model f to classify an observation into levels A or B based on the values of several predictors  $X_1, X_2, \ldots, X_p$  (quantitative or categorical)

 $Y = f(X_1, X_2, \dots, X_p) + \epsilon$  where  $f, \epsilon$  take values in  $\{A_1, \dots, A_k\}$ 

How do we measure accuracy of our model?

• Training data: Compute error rate on observations in training data:

Training Error = 
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

where  $I(y_i \neq \hat{y}_i)$  is the indicator variable that equals 1 if  $y_i \neq \hat{y}_i$  and 0 otherwise.

• Test data: Compute average proportion of errors on test data

Test Error = Avg. 
$$I(y_0 \neq \hat{y}_0)$$

where  $\hat{y}_0$  is the predicted class for a test observation with predictor  $x_0$ .

In general, the value of a response Y may depend on more than just the values of the predictors  $X_1, \ldots, X_p$  in a model.

In general, the value of a response Y may depend on more than just the values of the predictors  $X_1, \ldots, X_p$  in a model.

• That is, given the value of predictors  $x_0$ , the value of the response  $y_0$  is random.

In general, the value of a response Y may depend on more than just the values of the predictors  $X_1, \ldots, X_p$  in a model.

• That is, given the value of predictors  $x_0$ , the value of the response  $y_0$  is random.

We can show that the model which minimizes test error is

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j \mid X = x_0)$$

In general, the value of a response Y may depend on more than just the values of the predictors  $X_1, \ldots, X_p$  in a model.

• That is, given the value of predictors  $x_0$ , the value of the response  $y_0$  is random.

We can show that the model which minimizes test error is

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j | X = x_0)$$

• A proof can be found on p. 18-22 of Elements of Statistical Learning (req. Math 391)

In general, the value of a response Y may depend on more than just the values of the predictors  $X_1, \ldots, X_p$  in a model.

• That is, given the value of predictors  $x_0$ , the value of the response  $y_0$  is random.

We can show that the model which minimizes test error is

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j | X = x_0)$$

- A proof can be found on p. 18-22 of Elements of Statistical Learning (req. Math 391)
- In practice, we cannot build this optimal model, since we don't know  $P(Y = A_j | X = x_0)$

Suppose Y takes two values A and B, and  $X_1$  and  $X_2$  are predictors taking values in [0, 1].

Suppose Y takes two values A and B, and  $X_1$  and  $X_2$  are predictors taking values in [0, 1]. Moreover, suppose the probability Y = A given  $X_1 = x_1$  and  $X_2 = x_2$  is  $(x_1^2 + x_2^2)/2$ 

Suppose Y takes two values A and B, and  $X_1$  and  $X_2$  are predictors taking values in [0, 1]. Moreover, suppose the probability Y = A given  $X_1 = x_1$  and  $X_2 = x_2$  is  $(x_1^2 + x_2^2)/2$ set.seed(1) n<-200 x1<-runif(n, 0,1) x2<-runif(n, 0,1) p<-(x1^2 + x2^2)/2

Suppose Y takes two values A and B, and  $X_1$  and  $X_2$  are predictors taking values in [0, 1]. Moreover, suppose the probability Y = A given  $X_1 = x_1$  and  $X_2 = x_2$  is  $(x_1^2 + x_2^2)/2$ set.seed(1) n<-200 x1<-runif(n, 0,1) x2<-runif(n, 0,1) p<-(x1^2 + x2^2)/2

Then

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j | X = x_0) = \begin{cases} A, & \text{if } x_1^2 + x_2^2 \ge 1 \\ B, & \text{if } x_1^2 + x_2^2 < 1 \end{cases}$$

## Plot 1



K-Nearest Neighbors 000000

## Plot 2



In general, using the Bayes Classifier produces an expected error rate of

$$1 - \operatorname{Avg.}\left(\max_{j} \operatorname{P}(Y = A_{j} \mid X = x_{0})\right)$$

In general, using the Bayes Classifier produces an expected error rate of

$$1 - \operatorname{Avg.}\left(\max_{j} \operatorname{P}(Y = A_{j} \mid X = x_{0})\right)$$

For our simulation, this gives an error of 1/3.

In general, using the Bayes Classifier produces an expected error rate of

$$1 - \operatorname{Avg.}\left(\max_{j} \operatorname{P}(Y = A_{j} \mid X = x_{0})\right)$$

For our simulation, this gives an error of 1/3.

• Can verify using multivariate calculus or by sampling a large number of times.

In general, using the Bayes Classifier produces an expected error rate of

$$1 - \operatorname{Avg.}\left(\max_{j} \operatorname{P}(Y = A_{j} \mid X = x_{0})\right)$$

For our simulation, this gives an error of 1/3.

• Can verify using multivariate calculus or by sampling a large number of times.

This is the theoretical lower bound on average error for a classification problem.

# Section 2

## K-Nearest Neighbors

In theory, the Bayes Classifier is our best model for classification.

In theory, the Bayes Classifier is our best model for classification.

• In practice, we don't know the conditional probability of Y given X, and so cannot build a Bayes Classifier model.

In theory, the Bayes Classifier is our best model for classification.

- In practice, we don't know the conditional probability of Y given X, and so cannot build a Bayes Classifier model.
- But given sufficient data, we can *estimate* the conditional probabilities (assuming they are generated by a continuous function).

In theory, the Bayes Classifier is our best model for classification.

- In practice, we don't know the conditional probability of Y given X, and so cannot build a Bayes Classifier model.
- But given sufficient data, we can *estimate* the conditional probabilities (assuming they are generated by a continuous function).

Given a positive integer K and a test observation  $x_0$ , let  $N_0$  denote the K nearest training observations to  $x_0$ . Then

$$P(Y = A_j \mid X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

In theory, the Bayes Classifier is our best model for classification.

- In practice, we don't know the conditional probability of Y given X, and so cannot build a Bayes Classifier model.
- But given sufficient data, we can *estimate* the conditional probabilities (assuming they are generated by a continuous function).

Given a positive integer K and a test observation  $x_0$ , let  $N_0$  denote the K nearest training observations to  $x_0$ . Then

$$P(Y = A_j \mid X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

• Our model is therefore  $f(x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$ .

Classify  $x_0$  for a variety of K



Sketch the classification boundaries for K = 3. What happens for K = 1? As K gets larger?



### **Error Rates**

Sketch the graph of KNN error rates as function of  $K^{-1}$ 



### Extra Practice

Use the first part of the .Rmd file on the course website to generate 5 random points and form classification boundaries for K = 1 and K = 2 KNN.

Then use the second part of the .Rmd file to classify 5 randomly generated points.