Nate Wells

Math 243: Stat Learning

September 30th, 2020

Outline

In today's class, we will...

- Discuss Logistic Regression for Classification
- Implement Logistic Regression in R

Section 1

Logistic Regression

Classificaiton Problems

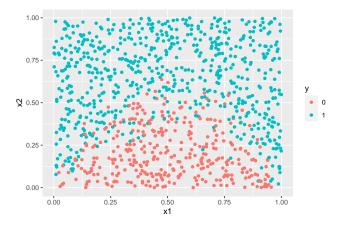
Suppose Y is a categorical variable with levels A_1, A_2, \ldots, A_k .

Goal: Build a model f to classify an observation into levels A_1, A_2, \ldots, A_k based on the values of several predictors X_1, X_2, \ldots, X_p (quantitative or categorical)

 $\hat{Y} = f(X_1, X_2, \dots, X_p)$ where f take values in $\{A_1, \dots, A_k\}$

Classification Regions

Any classification model will divide predictor space into unions of regions, where each point in a region will be classified in the same way.



Different models will have different geometries for classification boundaries.

The Bayes Classifier and KNN

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j \mid X = x_0)$$

The Bayes Classifier and KNN

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j \mid X = x_0)$$

• In practice, the conditional probabilities are not known.

The Bayes Classifier and KNN

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_j P(Y = A_j \mid X = x_0)$$

- In practice, the conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j \mid X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

 KNN has very low training time (basically none), but often large test time (especially for large K)

- KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.

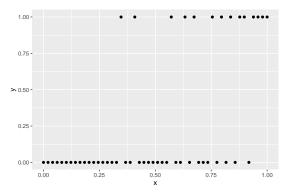
- KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.

- KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **(2)** KNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.

- KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **(2)** KNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.
- **6** KNN requires large sample sizes (compared to alternatives)

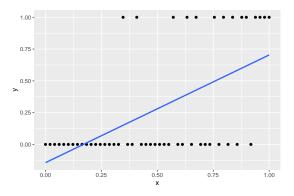
Alternatives

Suppose Y is a binary categorical variable with 1 quantitative predictor X. We want to model p(X) = P(Y = 1|X)



Alternatives

Suppose Y is a binary categorical variable with 1 quantitative predictor X. We want to model p(X) = P(Y = 1|X)



Linear model: $p(X) = \beta_0 + \beta_1 X$ Predict 1 if $\hat{Y} \ge 0.5$, and 0 otherwise.

Problems with linear model

() Our prediction p(X) may take values outside 0 and 1.

Problems with linear model

- **()** Our prediction p(X) may take values outside 0 and 1.
- Too inflexible (enormous bias)

Problems with linear model

- **()** Our prediction p(X) may take values outside 0 and 1.
- O Too inflexible (enormous bias)
- S Cannot easily extend to categorical Y with more than 2 levels.

Odds

Suppose an event occurs with probability p. The odds of the event occurring is

$$odds = \frac{p}{1-p}$$

Odds

Suppose an event occurs with probability p. The odds of the event occurring is

$$odds = \frac{p}{1-p}$$

• If
$$p = .75$$
, then $odds = 3$ (or 3 to 1).

• If
$$p = .5$$
, then $odds = 1$ (or even odds).

Odds

Suppose an event occurs with probability p. The odds of the event occurring is

$$odds = \frac{p}{1-p}$$

• If
$$p = .75$$
, then $odds = 3$ (or 3 to 1).

• If
$$p = .5$$
, then $odds = 1$ (or even odds).

For extremely likely or unlikely events, odds can be astronomical.

Odds

Suppose an event occurs with probability p. The odds of the event occurring is

$$odds = \frac{p}{1-p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).

For extremely likely or unlikely events, odds can be astronomical.

• "The possibility of successfully navigating an asteroid field is approximately 3,720 to 1"

Odds

Suppose an event occurs with probability p. The odds of the event occurring is

$$odds = \frac{p}{1-p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).

For extremely likely or unlikely events, odds can be astronomical.

• "The possibility of successfully navigating an asteroid field is approximately 3,720 to $1^{\prime\prime}$

Instead, we consider log odds:

$$\log \text{ odds} = \ln \frac{p}{1-p} = \ln p - \ln(1-p)$$

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

• Increasing X by 1 increases the log odds of Y = 1 by a constant amount.

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant *relative rate*

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant *relative rate* Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1 X}$$

Suppose Y is binary categorical, and that the log odds of Y = 1 is linear in X.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant *relative rate* Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

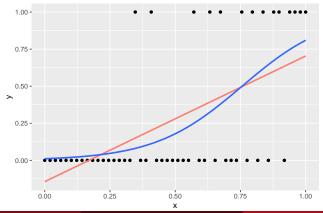
Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

The Logistic Curve

The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



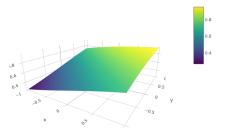
$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$



Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method...

Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method...

For historical reasons

Logistic Regression is the most commonly used binary classification method...

- 1 For historical reasons
- Ø Due to its relative simplicity

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Due to its relative simplicity
- **8** For ease of interpretation

Logistic Regression is the most commonly used binary classification method...

- 1 For historical reasons
- Ø Due to its relative simplicity
- **8** For ease of interpretation
- Ø Because it often gives reasonable predictions

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Ø Due to its relative simplicity
- **8** For ease of interpretation
- **4** Because it often gives reasonable predictions

Logistic regression has been used to...

Create spam filters

Logistic Regression is the most commonly used binary classification method...

- 1 For historical reasons
- Ø Due to its relative simplicity
- **8** For ease of interpretation
- **4** Because it often gives reasonable predictions

Logistic regression has been used to...

- Create spam filters
- Ø Forecast election results

Logistic Regression is the most commonly used binary classification method...

- 1 For historical reasons
- Ø Due to its relative simplicity
- **8** For ease of interpretation
- **4** Because it often gives reasonable predictions

Logistic regression has been used to...

- Create spam filters
- Ø Forecast election results
- **③** Investigate health outcomes based on comorbidities

Section 2

Creating Logistic Models

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

• We need to estimate the parameters β_0, β_1 based on training data.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

The likelihood function:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Assume that the log-odds of Y = 1 is indeed linear in X, so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X$$

- We need to estimate the parameters β_0, β_1 based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
- But it turns out the method of Maximum Likelihood is preferable, since it allows us to relax some conditions on residuals.

The likelihood function:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

• The goal is to choose \hat{eta}_0 and \hat{eta}_1 so as to maximize ℓ

The Unsinkable Example

The Titanic data set contains information on passengers of the Titanic

##	Warning: 2 p	parsing failures.
##	row col	expected actual file
##	37 name del	limiter or quote M 'data/titanic.csv'
##	37 name del	limiter or quote 'data/titanic.csv'
	Rows: 1,313	
##	Columns: 11	
##	<pre>\$ row.names</pre>	<dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17</dbl>
##	<pre>\$ pclass</pre>	<chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st", "</chr>
##	<pre>\$ survived</pre>	<pre><dbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1,</dbl></pre>
##	\$ name	<chr> "Allen, Miss Elisabeth Walton", "Allison, Miss Helen Lora</chr>
##	\$ age	<db1> 29.0000, 2.0000, 30.0000, 25.0000, 0.9167, 47.0000, 63.00</db1>
##	<pre>\$ embarked</pre>	<chr> "Southampton", "Southampton", "Southampton", "Southampton</chr>
##	<pre>\$ home.dest</pre>	<chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montr</chr>
##	\$ room	<chr> "B-5", "C26", "C26", "C26", "C22", "E-12", "D-7", "A-36",</chr>
##	<pre>\$ ticket</pre>	<chr> "24160 L221", NA, NA, NA, NA, NA, "13502 L77", NA, NA, NA</chr>
##	\$ boat	<chr> "2", NA, "(135)", NA, "11", "3", "10", NA, "2", "(22)", "</chr>
##	\$ sex	<chr> "female", "female", "male", "female", "male", "male", "fe</chr>

What relationship can we discover between survival, sex, and age?

Data Processing

summary(Titanic)

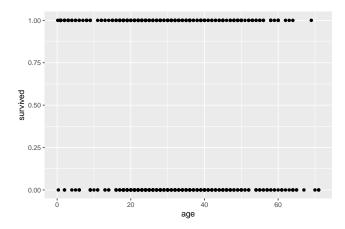
##	row.names	pclass	survived	name
##	Min. : 1	Length:1313	Min. :0.000	Length:1313
##	1st Qu.: 329	Class :character	1st Qu.:0.000	Class :character
##	Median : 657	Mode :character	Median :0.000	Mode :character
##	Mean : 657		Mean :0.342	
##	3rd Qu.: 985		3rd Qu.:1.000	
##	Max. :1313		Max. :1.000	
##				
##	age	embarked	home.dest	room
##	Min. : 0.1667	Length:1313	Length:1313	Length: 1313
##	1st Qu.:21.0000) Class :characte	r Class :chara	cter Class :character
##	Median :30.0000) Mode :characte	r Mode :chara	cter Mode :character
##	Mean :31.1942			
##	3rd Qu.:41.0000			
##	Max. :71.0000)		
##	NA's :680			
##	ticket	boat	sex	
##		Length:1313		
##		er Class :charact		
##	Mode :characte	er Mode :charact	er Mode :char	acter
##				
##				
##				
##				

What do we do about those NA's?

```
library(tidyr)
Titanic1<-Titanic %>% drop_na(age)
```

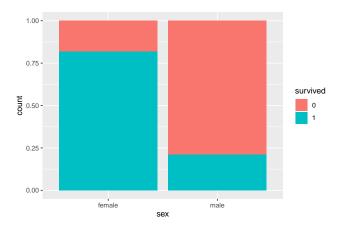
Children first?

Titanic1 %>% ggplot(aes(x = age, y = survived))+ geom_point()



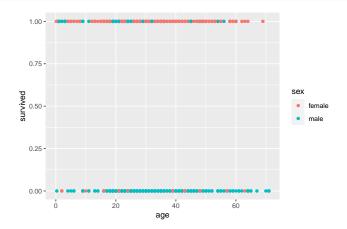
Women First?

```
Titanic1 %>% mutate(survived = as.factor(survived)) %>%
ggplot( aes( x = sex, fill = survived))+
geom_bar(position = "fill")
```



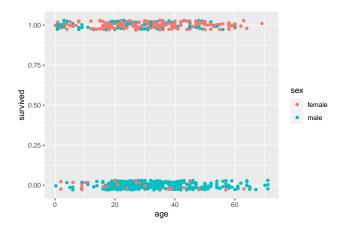
Women and Children First?

Titanic1 %>% ggplot(aes(x = age, y = survived, color = sex))+ geom_point()



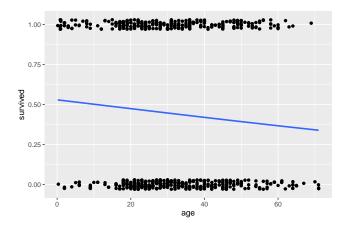
Women and Children First?

Titanic1 %>% ggplot(aes(x = age, y = survived, color = sex))+ geom_jitter(height =



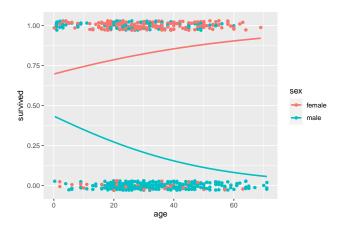
Logistic Model 1

```
Titanic1 %>% ggplot( aes( x = age, y = survived ))+
geom_jitter(height = 0.03) +
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)
```



Logistic Models 2 and 3

```
Titanic1 %>% ggplot( aes( x = age, y = survived, color = sex ))+
geom_jitter(height = 0.03) +
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)
```



R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	0.11719513	0.187746466	0.6242202	0.53248299
##	age	-0.01102924	0.005492735	-2.0079686	0.04464663

R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

R code for Logistic Models

```
simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")</pre>
```

summary(simple_logreg)\$coefficients

Since $e^{0.011} = 1.01106$, increasing age by 1 year decreases survival probability by 1.106%

R code for Multiple Logistic Models

simple_logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(simple_logreg)\$coefficients</pre>

##		Estimate	Std. Error	z value	$\Pr(z)$
##	(Intercept)	1.9158497	0.278035089	6.890676	5.552794e-12
##	age	-0.0129209	0.006863803	-1.882469	5.977237e-02
##	sexmale	-2.8415031	0.209063920	-13.591552	4.494495e-42

R code for Multiple Logistic Models

simple_logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(simple_logreg)\$coefficients</pre>

R code for Multiple Logistic Models

```
simple_logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(simple_logreg)$coefficients</pre>
```

What is the survival probability for a male child of age 5?

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if odds} \geq 1, \ 0, & ext{if odds} < 1 \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if } p(X) \geq 1 - p(X), \ 0, & ext{otherwise.} \end{cases}$$

$$\hat{Y} = egin{cases} 1, & ext{if odds} \geq 1, \\ 0, & ext{if odds} < 1 \end{cases}$$

$$\hat{Y} = \begin{cases} 1, & \text{if log odds } \ge 0, \\ 0, & \text{if log odds } < 0 \end{cases}$$