An Overview of Statistical Learning

Nate Wells

Math 243: Stat Learning

September 4th, 2020

Vectors and Matrices		

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age

In today's class, we will...

• Review matrix notation

Vectors and Matrices 00000		

- Review matrix notation
- Discuss the goals of statistical learning algorithms

Vectors and Matrices		

- Review matrix notation
- Discuss the goals of statistical learning algorithms
- Survey some of the most common methods for statistical learning

Vectors and Matrices		

- Review matrix notation
- Discuss the goals of statistical learning algorithms
- Survey some of the most common methods for statistical learning
- Analyze data from the 'guess my age' activity

Section 1

Vectors and Matrices

Nate Wells (Math 243: Stat Learning)

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
0000			

atrices

• An $n \times p$ matrix **X** is an array of np numbers, arranged into n rows and p columns.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X} \text{ is } 3 \times 4$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
0000			

atrices

• An $n \times p$ matrix **X** is an array of np numbers, arranged into n rows and p columns.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X} \text{ is } 3 \times 4$$

• The (*i*, *j*)-entry of **X** is denote $x_{i,j}$ and is the entry in the *i*th row and *j*th column of **X**

$$x_{1,2} = 2$$
 $x_{2,2} = 6$ $x_{3,4} = 12$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000	0000	00

atrices

• An $n \times p$ matrix **X** is an array of np numbers, arranged into n rows and p columns.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X} \text{ is } 3 \times 4$$

• The (*i*, *j*)-entry of **X** is denote $x_{i,j}$ and is the entry in the *i*th row and *j*th column of **X**

$$x_{1,2} = 2$$
 $x_{2,2} = 6$ $x_{3,4} = 12$

• For us, rows will index samples or observations (from 1 to *n*), while columns will index variables (from 1 to *p*); this is consistent with the tidy dataframe structure

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

Vectors and Transposes

The transpose of a matrix X, denoted X^T, is the matrix obtained switching rows and columns. (That is, the (i, j) entry of X^T is the (j, i) entry of X)

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X}^{\mathsf{T}} = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

Vectors and Transposes

The transpose of a matrix X, denoted X^T, is the matrix obtained switching rows and columns. (That is, the (i, j) entry of X^T is the (j, i) entry of X)

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X}^{\mathsf{T}} = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$$

• An *n*-dimensional vector **v** is an ordered list of *n* numbers. By default, an *n*-dimensional vector is represented as a $n \times 1$ matrix

$$\mathbf{v} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

Vectors and Transposes

The transpose of a matrix X, denoted X^T, is the matrix obtained switching rows and columns. (That is, the (i, j) entry of X^T is the (j, i) entry of X)

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \mathbf{X}^{\mathsf{T}} = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$$

• An *n*-dimensional vector **v** is an ordered list of *n* numbers. By default, an *n*-dimensional vector is represented as a $n \times 1$ matrix

$$\mathbf{v} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

Rows and Columns

• We often are interested in the entries in the *i*th row of **X**, which we will denote using the vector x_i (recall vectors are by default, column vectors). It is the list of data on the *i*th individual in the sample

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix} \qquad \mathbf{x}_{i}^{T} = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{ip} \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} x_{1}^{T} \\ x_{2}^{2} \\ \vdots \\ x_{n}^{T} \end{pmatrix}$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

Rows and Columns

• We often are interested in the entries in the *i*th row of **X**, which we will denote using the vector x_i (recall vectors are by default, column vectors). It is the list of data on the *i*th individual in the sample

$$x_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix} \qquad x_{i}^{T} = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{ip} \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} x_{1}^{\prime} \\ x_{2}^{2} \\ \vdots \\ x_{n}^{T} \end{pmatrix}$$

• In other situations, we consider the *j*th column of a matrix, denoted x_j. It is the list of values for *j*th variable in the sample

$$\mathbf{x}_{i} = \begin{pmatrix} \mathbf{x}_{1j} \\ \mathbf{x}_{2j} \\ \vdots \\ \mathbf{x}_{nj} \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{p} \end{pmatrix}$$

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

• Vectors of length *n* (corresponding to the sample size) will be denoted using lower case bold letters: **x**, **y**, **x**₁.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

- Vectors of length *n* (corresponding to the sample size) will be denoted using lower case bold letters: **x**, **y**, **x**₁.
- Vectors of length *p* (corresponding to the number of predictor variables) will be denoted using lower case normal font letters: *x*, *y*, *x*₁.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

- Vectors of length *n* (corresponding to the sample size) will be denoted using lower case bold letters: **x**, **y**, **x**₁.
- Vectors of length *p* (corresponding to the number of predictor variables) will be denoted using lower case normal font letters: *x*, *y*, *x*₁.
- Individual numbers will also be denoted using lower case normal font letters (but usually with two subscripts): x_{ij}.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

- Vectors of length *n* (corresponding to the sample size) will be denoted using lower case bold letters: **x**, **y**, **x**₁.
- Vectors of length *p* (corresponding to the number of predictor variables) will be denoted using lower case normal font letters: *x*, *y*, *x*₁.
- Individual numbers will also be denoted using lower case normal font letters (but usually with two subscripts): x_{ij}.
- Matrices will be denoted using capital bold letters: X, A

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000			

- Vectors of length *n* (corresponding to the sample size) will be denoted using lower case bold letters: **x**, **y**, **x**₁.
- Vectors of length *p* (corresponding to the number of predictor variables) will be denoted using lower case normal font letters: *x*, *y*, *x*₁.
- Individual numbers will also be denoted using lower case normal font letters (but usually with two subscripts): x_{ij}.
- Matrices will be denoted using capital bold letters: X, A
- We will use capital normal font letters to denote variables. X is usually used for predictor variables, and Y is used for response variables

Section 2

What is Stat Learning

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	0000		

• Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p and zero, one, or more response variables Y, Y_1, \ldots

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	0000		

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p and zero, one, or more response variables Y, Y_1, \ldots
- In the simplest case, we observe the values of a quantitative response Y, as well as p many predictors X₁,..., X_p.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
00000 0	0000	0000	00

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p and zero, one, or more response variables Y, Y_1, \ldots
- In the simplest case, we observe the values of a quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a relationship between these observed values:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

Vectors and Matrices	What is Stat Learning		
00000	0000	0000	00

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p and zero, one, or more response variables Y, Y_1, \ldots
- In the simplest case, we observe the values of a quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a relationship between these observed values:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

• Here, ϵ represents a random or unobserved error term

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p and zero, one, or more response variables Y, Y_1, \ldots
- In the simplest case, we observe the values of a quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a relationship between these observed values:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

• Here, ϵ represents a random or unobserved error term

The overarching goal of stat learning is to estimate f, given data on X and Y.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

An Example

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

An Example

X = runif(100, 0,1) E = rnorm(100, 0, .25) Y = 2*X + E

df<-data.frame(X,Y)

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

Suppose for each Reed faculty, we have year undergrad degree was awarded X and want to predict age Y.

We wish to create a model f that takes in X as input and outputs our best guess \hat{Y} for Y.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

Suppose for each Reed faculty, we have year undergrad degree was awarded X and want to predict age Y.

We wish to create a model f that takes in X as input and outputs our best guess \hat{Y} for Y.

• Note that even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

Suppose for each Reed faculty, we have year undergrad degree was awarded X and want to predict age Y.

We wish to create a model f that takes in X as input and outputs our best guess \hat{Y} for Y.

- Note that even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ
- Thus, there are two sources of error in our model:
- **1** Reducible error, in the form of our estimate \hat{f} for f.

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

Suppose for each Reed faculty, we have year undergrad degree was awarded X and want to predict age Y.

We wish to create a model f that takes in X as input and outputs our best guess \hat{Y} for Y.

- Note that even if we have a perfect estimate for f in Y = f(X) + ε, the predicted value Ŷ = f(X) of Y may not equal Y, since Y also depends on ε
- Thus, there are two sources of error in our model:
- **0** Reducible error, in the form of our estimate \hat{f} for f.
- ${\it 2}$ Irreducible error, in the form of ϵ

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
	00000		

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

Suppose for each Reed faculty, we have year undergrad degree was awarded X and want to predict age Y.

We wish to create a model f that takes in X as input and outputs our best guess \hat{Y} for Y.

- Note that even if we have a perfect estimate for f in Y = f(X) + ε, the predicted value Ŷ = f(X) of Y may not equal Y, since Y also depends on ε
- Thus, there are two sources of error in our model:
- **1** Reducible error, in the form of our estimate \hat{f} for f.
- **2** Irreducible error, in the form of ϵ

We study techniques to minimize error of the first type

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	
00000	0000●	0000	
Inference			

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

Vectors and Matrices	What is Stat Learning	
	00000	

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

• Which predictors are likely associated with response?

Vectors and Matrices 00000	What is Stat Learning ○○○○●	

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

- Which predictors are likely associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?

Vectors and Matrices 00000	What is Stat Learning 0000●	

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

- Which predictors are likely associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Logistic? Something more complicated?)

Vectors and Matrices 00000	What is Stat Learning ○○○○●	

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

- Which predictors are likely associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Logistic? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

Vectors and Matrices 00000	What is Stat Learning ○○○○●	

In other settings, we are more interested in the relationship between each predictor X_1, \ldots, X_p and the response.

- Which predictors are likely associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Logistic? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

Here, we are trying to ${\bf infer}$ information about the factors which contribute to course eval score.

Section 3

Methods of Stat Learning

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning ○●○○	Guess My Age 00

Parametric methods for estimating f involve two steps:

• Based on domain knowledge, make assumptions about the functional form or shape of *f*.

Vectors and Matrices 00000	Methods of Stat Learning ○●○○	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of f.
- The linear model is a common choice for the shape of *f*:

$$f(X) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Vectors and Matrices 00000	Methods of Stat Learning ○●○○	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of f.
- The linear model is a common choice for the shape of *f*:

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Ø After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.

Vectors and Matrices 00000	Methods of Stat Learning ○●○○	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of f.
- The linear model is a common choice for the shape of *f*:

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- Ø After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.
- In the case of the linear model, we estimate the values of β₀,..., β_p using the method of least squares.

Vectors and Matrices 00000	Methods of Stat Learning ○○●○	

Vectors and Matrices 00000	Methods of Stat Learning ○○●○	

Non-parametric methods forgo assumptions on the shape of f, working instead in a very general class of functions

• In doing so, non-parametric models avoid the problem of mis-characterizing the relationship between predictors and response

Vectors and Matrices 00000	Methods of Stat Learning ○○●○	

- In doing so, non-parametric models avoid the problem of mis-characterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables

Vectors and Matrices 00000	Methods of Stat Learning ○○●○	

- In doing so, non-parametric models avoid the problem of mis-characterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables
- Non-parametric models often require orders of magnitute more data to make accurate predictions, compared to parametric models

Vectors and Matrices 00000	Methods of Stat Learning ○○●○	

- In doing so, non-parametric models avoid the problem of mis-characterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables
- Non-parametric models often require orders of magnitute more data to make accurate predictions, compared to parametric models
- Some examples of non-parametric models include: Spline Regression, Support Vector Machines, and Neural Networks

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
		0000	

Most statistical learning techniques fall into one of two categories:

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My Age
		0000	

Most statistical learning techniques fall into one of two categories:

 Supervised learning, in which predictors are compared with one or more response variables

Vectors and Matrices	Methods of Stat Learning	
	0000	

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables
- Ø Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable

Vectors and Matrices	Methods of Stat Learning	
	0000	

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables
- Ø Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable

Statistical learning problems also fall into a pair of categories:

Vectors and Matrices		Methods of Stat Learning	
00000	00000	0000	

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables
- Ø Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable

Statistical learning **problems** also fall into a pair of categories:

egression problems, wherein we measure the magnitude of a quantitative response variable

Vectors and Matrices 00000	Methods of Stat Learning ○○○●	

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables
- Ø Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable

Statistical learning problems also fall into a pair of categories:

- Regression problems, wherein we measure the magnitude of a **quantitative** response variable
- Ø Classification problems, wherein we sort a qualitative response variable into several discrete classes.

Section 4

Guess My Age

Nate Wells (Math 243: Stat Learning)

Vectors and Matrices	What is Stat Learning	Methods of Stat Learning	Guess My
			00

The Task

- Open a new .Rmd file in RStudio and import the data set from Monday's class, available on the course webpage:
- https://reed-stat-learning-fall-2020.github.io/data/how_old.csv
 - Explore the data using ggplot
 - Outate the data set using dplyr verbs to assess each groups accuracy. Which group seemed to have the most accurate predictions?
 - () Which faculty member's age predictions seemed to be the most (and least) variables?

Age